
Cognitive Systems Monographs 35

Mark Hoogendoorn
Burkhardt Funk

Machine
Learning for
the Quantified
Self
On the Art of Learning from Sensory
Data

Cognitive Systems Monographs

Volume 35

Series editors

Rüdiger Dillmann, University of Karlsruhe, Karlsruhe, Germany
e-mail: ruediger.dillmann@kit.edu

Yoshihiko Nakamura, Tokyo University, Tokyo, Japan
e-mail: nakamura@ynl.t.u-tokyo.ac.jp

Stefan Schaal, University of Southern California, Los Angeles, USA
e-mail: sschaal@usc.edu

David Vernon, University of Skövde, Skövde, Sweden
e-mail: david@vernon.eu

About this Series

The Cognitive Systems Monographs (COSMOS) publish new developments and
advances in the fields of cognitive systems research, rapidly and informally but with
a high quality. The intent is to bridge cognitive brain science and biology with
engineering disciplines. It covers all the technical contents, applications, and
multidisciplinary aspects of cognitive systems, such as Bionics, System Analysis,
System Modelling, System Design, Human Motion, Understanding, Human
Activity Understanding, Man-Machine Interaction, Smart and Cognitive
Environments, Human and Computer Vision, Neuroinformatics, Humanoids,
Biologically motivated systems and artefacts Autonomous Systems, Linguistics,
Sports Engineering, Computational Intelligence, Biosignal Processing, or Cognitive
Materials as well as the methodologies behind them. Within the scope of the series
are monographs, lecture notes, selected contributions from specialized conferences
and workshops.

Advisory Board

Heinrich H. Bülthoff, MPI for Biological Cybernetics, Tübingen, Germany
Masayuki Inaba, The University of Tokyo, Japan
J.A. Scott Kelso, Florida Atlantic University, Boca Raton, FL, USA
Oussama Khatib, Stanford University, CA, USA
Yasuo Kuniyoshi, The University of Tokyo, Japan
Hiroshi G. Okuno, Kyoto University, Japan
Helge Ritter, University of Bielefeld, Germany
Giulio Sandini, University of Genova, Italy
Bruno Siciliano, University of Naples, Italy
Mark Steedman, University of Edinburgh, Scotland
Atsuo Takanishi, Waseda University, Tokyo, Japan

More information about this series at http://www.springer.com/series/8354

http://www.springer.com/series/8354

Mark Hoogendoorn • Burkhardt Funk

Machine Learning
for the Quantified Self
On the Art of Learning from Sensory Data

123

Mark Hoogendoorn
Department of Computer Science
Vrije Universiteit Amsterdam
Amsterdam
The Netherlands

Burkhardt Funk
Institut für Wirtschaftsinformatik
Leuphana Universität Lüneburg
Lüneburg, Niedersachsen
Germany

ISSN 1867-4925 ISSN 1867-4933 (electronic)
Cognitive Systems Monographs
ISBN 978-3-319-66307-4 ISBN 978-3-319-66308-1 (eBook)
https://doi.org/10.1007/978-3-319-66308-1

Library of Congress Control Number: 2017949497

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Live as if you were to die tomorrow.
Learn as if you were to live forever.

Mahatma Gandhi

Foreword

Sensors are all around us, and increasingly on us. We carry smartphones and
watches, which have the potential to gather enormous quantities of data. These data
are often noisy, interrupted, and increasingly high dimensional. A challenge in data
science is how to put this veritable fire hose of noisy data to use and extract useful
summaries and predictions.

In this timely monograph, Mark Hoogendoorn and Burkhardt Funk face up to
the challenge. Their choice of material shows good mastery of the various subfields
of machine learning, which they bring to bear on these data. They cover a wide
array of techniques for supervised and unsupervised learning, both for
cross-sectional and time series data. Ending each chapter with a useful set of
thinking and computing problems adds a helpful touch. I am sure this book will be
welcomed by a broad audience, and I hope it is a big success.

June 2017 Trevor Hastie
Stanford University, Stanford, CA, USA

vii

Preface

Self-tracking has become part of a modern lifestyle; wearables and smartphones
support self-tracking in an easy fashion and change our behavior such as in the
health sphere. The amount of data generated by these devices is so overwhelming
that it is difficult to get useful insight from it. Luckily, in the domain of artificial
intelligence, techniques exist that can help out here: machine learning approaches
are well suited to assist and enable one to analyze this type of data. While there are
ample books that explain machine learning techniques, self-tracking data comes
with its own difficulties that require dedicated techniques such as learning over time
and across users. In this book, we will explain the complete loop to effectively use
self-tracking data for machine learning; from cleaning the data, the identification of
features, finding clusters in the data, algorithms to create predictions of values for
the present and future, to learning how to provide feedback to users based on their
tracking data. All concepts we explain are drawn from state-of-the-art scientific
literature. To illustrate all approaches, we use a case study of a rich self-tracking
dataset obtained from the crowdsignals platform. While the book is focused on the
self-tracking data, the techniques explained are more widely applicable to sensory
data in general, making it useful for a wider audience.

Who should read this book? The book is intended for students, scholars, and
practitioners with an interest in analyzing sensory data and user-generated content
to build their own algorithms and applications. We will explain the basics of the
suitable algorithms, and the underlying mathematics will be explained as far as it is
beneficial for the application of the methods. The focus of the book is on the
application side. We provide implementation in both Python and R of nearly all
algorithms we explain throughout the book and make the code available for all the
case studies we present in the book as well.

Additional material is available on the website of the book (ml4qs.org):

• Code examples are available in Python and R
• Datasets used in the book and additional sources to be explored by readers
• Up-to-date list of scientific papers and text books related to the book’s theme

ix

https://ml4qs.wordpress.com/

We have been researchers in this field for over ten years and would like to thank
everybody who formed the body of knowledge that has become the basis for this
book. First of all, we would like to thank the people at crowdsignals.io for pro-
viding us with the dataset that is used throughout the book, Evan Welbourne in
particular. Furthermore, we want to thank the colleagues who contributed to the
book: Dennis Becker, Ward van Breda, Vincent Bremer, Gusz Eiben, Eoin Grau,
Evert Haasdijk, Ali el Hassouni, Floris den Hengst, and Bart Kamphorst. We also
want to thank all the graduate students that participated in the Machine Learning for
the Quantified Self course at the Vrije Universiteit Amsterdam in June 2017 and
provided feedback on a preliminary version of the book that was used as reader
during the course. Mark would like to thank (in the order of appearance in his
academic career) Maria Gini, Catholijn Jonker, Jan Treur, Gusz Eiben, and Peter
Szolovits for being such great sources of inspiration.

And of course, the writing of this book would not have been possible without
our loving family and friends. Mark would specifically like to thank his parents for
their continuous support and his friends for helping him in getting the proper
relaxation in the busy book-writing period. Burkhardt is very grateful to his family,
especially his wife Karen Funk and his two daughters, for allowing him to often
work late and to spend almost half a year at the University of Virginia and Stanford
University during his sabbatical.

Amsterdam, The Netherlands Mark Hoogendoorn
Lüneburg, Germany Burkhardt Funk
August 2017

x Preface

Contents

1 Introduction . 1
1.1 The Quantified Self. 2
1.2 The Goal of this Book . 4
1.3 Basic Terminology . 5

1.3.1 Data Terminology . 5
1.3.2 Machine Learning Terminology. 7

1.4 Basic Mathematical Notation . 8
1.5 Overview of the Book . 10

Part I Sensory Data and Features

2 Basics of Sensory Data . 15
2.1 Crowdsignals Dataset . 15
2.2 Converting the Raw Data to an Aggregated Data Format 17
2.3 Exploring the Dataset . 19
2.4 Machine Learning Tasks. 23
2.5 Exercises. 24

2.5.1 Pen and Paper . 24
2.5.2 Coding. 24

3 Handling Noise and Missing Values in Sensory Data 25
3.1 Detecting Outliers . 27

3.1.1 Distribution-Based Models . 28
3.1.2 Distance-Based Models . 30

3.2 Imputation of Missing Values. 34
3.3 A Combined Approach: The Kalman Filter 35
3.4 Transformation . 37

3.4.1 Lowpass Filter . 38
3.4.2 Principal Component Analysis. 38

xi

3.5 Case Study . 42
3.5.1 Outlier Detection . 43
3.5.2 Missing Value Imputation . 45
3.5.3 Kalman Filter . 46
3.5.4 Data Transformation . 47

3.6 Exercises. 49
3.6.1 Pen and Paper . 49
3.6.2 Coding. 50

4 Feature Engineering Based on Sensory Data 51
4.1 Time Domain . 51

4.1.1 Numerical Data . 52
4.1.2 Categorical Data . 54
4.1.3 Mixed Data . 56

4.2 Frequency Domain . 58
4.2.1 Fourier Transformations . 58
4.2.2 Features in Frequency Domain 60

4.3 Features for Unstructured Data . 62
4.3.1 Pre-processing Text Data. 62
4.3.2 Bag of Words . 63
4.3.3 TF-IDF . 63
4.3.4 Topic Modeling . 64

4.4 Case Study . 65
4.4.1 Time Domain . 66
4.4.2 Frequency Domain . 67
4.4.3 New Dataset . 68

4.5 Exercises. 69
4.5.1 Pen and Paper . 69
4.5.2 Coding. 70

Part II Learning Based on Sensory Data

5 Clustering. 73
5.1 Learning Setup . 73
5.2 Distance Metrics . 74

5.2.1 Individual Data Points Distance Metrics 74
5.2.2 Person Level Distance Metrics 77

5.3 Non-hierarchical Clustering . 82
5.4 Hierarchical Clustering . 84

5.4.1 Agglomerative Clustering . 84
5.4.2 Divisive Clustering . 87

5.5 Subspace Clustering . 88
5.6 Datastream Clustering. 91
5.7 Performance Evaluation . 93

xii Contents

5.8 Case Study . 94
5.8.1 Non-hierarchical Clustering . 94
5.8.2 Hierarchical Clustering . 98

5.9 Exercises. 98
5.9.1 Pen and Paper . 98
5.9.2 Coding. 100

6 Mathematical Foundations for Supervised Learning 101
6.1 Learning Process and Elements . 101

6.1.1 Unknown Target Function . 102
6.1.2 Observed Data . 104
6.1.3 Error Measure . 105
6.1.4 Hypothesis Set and the Learning Machine. 107
6.1.5 Model Selection and Evaluation 111

6.2 Learning Theory . 114
6.2.1 PAC Learnability. 114
6.2.2 VC-Dimension and VC-Bound 116
6.2.3 Implications . 118

6.3 Exercises. 120
6.3.1 Pen and Paper . 120
6.3.2 Coding. 121

7 Predictive Modeling without Notion of Time. 123
7.1 Learning Setup . 123
7.2 Feedforward Neural Networks . 125

7.2.1 Perceptron . 125
7.2.2 Multi-layer Perceptron . 128
7.2.3 Convolutional Neural Networks. 129

7.3 Support Vector Machines . 131
7.4 K-Nearest Neighbor . 134
7.5 Decision Trees . 135
7.6 Naive Bayes . 139
7.7 Ensembles. 140

7.7.1 Bagging . 141
7.7.2 Boosting . 141

7.8 Predictive Modeling for Data Streams . 144
7.9 Practical Considerations . 145

7.9.1 Feature Selection . 145
7.9.2 Regularization . 147

7.10 Case Study . 148
7.10.1 Classification: Predicting the Activity Label 149
7.10.2 Regression: Predicting the Heart Rate 157

Contents xiii

7.11 Exercises. 163
7.11.1 Pen and Paper . 163
7.11.2 Coding. 164

8 Predictive Modeling with Notion of Time . 167
8.1 Learning Setup . 167
8.2 Time Series Analysis . 168

8.2.1 Basic Concepts . 169
8.2.2 Filtering and Smoothing . 170
8.2.3 Autoregressive Integrated Moving Average

Model—ARIMA . 173
8.2.4 Estimating and Forecasting Time Series Models 176
8.2.5 Example Application . 177

8.3 Neural Networks. 181
8.3.1 Recurrent Neural Networks . 182
8.3.2 Echo State Networks . 184

8.4 Dynamical Systems Models . 186
8.4.1 Example Based on Bruce’s Data 186
8.4.2 Parameter Optimization . 188

8.5 Case Study . 195
8.5.1 Tuning Parameters. 195
8.5.2 Results. 197

8.6 Exercises. 201
8.6.1 Pen and Paper . 201
8.6.2 Coding. 201

9 Reinforcement Learning to Provide Feedback and Support 203
9.1 Basic Setting. 203
9.2 One-Step SARSA Temporal Difference Learning 208
9.3 Q-Learning . 210
9.4 SARSA(k) and Q(k) . 211
9.5 Approximate Solutions . 212
9.6 Discretizing the State Space . 212
9.7 Exercises. 213

9.7.1 Pen and Paper . 213
9.7.2 Coding. 214

Part III Discussion

10 Discussion . 217
10.1 Learning Full Circle . 217
10.2 Heterogeneity . 218
10.3 Effective Data Collection and Reuse. 219
10.4 Data Processing and Storage. 219

xiv Contents

10.5 Better Predictive Modeling and Clustering 220
10.6 Validation . 221

References . 223

Index . 229

Contents xv

Chapter 1
Introduction

Before diving into the terminology and defining the core concepts used throughout
this book, let us first start with two fictive, yet illustrative, examples that we will
return to regularly throughout this book.

The first example involves a person called Arnold. Arnold is 25 years old, loves to
run and cycle, and is a regular visitor of the gym. His ultimate goal is to participate
in an IRONMAN triathlon race consisting of 3.86 kilometers of swimming, 180
kilometers of cycling and running a marathon to wrap it all up—a daunting task.
Besides being a fan of sports, Arnold is also a gadget freak. This combination of
two passions has resulted in what one could call an obsession to measure everything
around his physical state. He always wears a smart watch to monitor his heart rate
and activity level and carries his mobile phone during all of his activities, allowing
for his position and movements to be logged continuously in addition to a number
of other measurements. He also installed multiple training programs on his mobile
phone to help him schedule workouts. On top of that he uses an electronic scale in
his bathroom that logs his weight and a chest strap to measure his respiration during
running and cycling. All of this data provides him with information about his current
state which Arnold hopes can help him to reach his ultimate goal making it to the
finish line during the Hawaiian IRONMAN championship.

Contrary to Arnold, whom you could call a measurement enthusiast, Bruce also
measures a lot of things around his body, but for Bruce this out of necessity. Bruce
is 45 years old and a diabetic. In addition, he regularly falls into a depression. Bruce
previously had trouble regulating his blood glucose levels using the insulin injections
he has to take along with each meal. Luckily for Bruce, new measurement devices
support him in to tackle his problems. He has access to a fully connected blood
glucose measurement device that provides him with advice on the insulin dose to
inject. To work on his mental breakdowns, Bruce installed an app that regularly asks
him to rate his mental state (e.g. how Bruce is feeling, what his mood is, how well
he slept, etcetera). In addition, the app logs all of his activities supported by location
tracking and activity logging on hismobile phone, as it is known that a lack of activity

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_1

1

2 1 Introduction

can lead to severe mental health problems. The app allows Bruce to pick up early
signals on a pending mood swing and to make changes to avoid relapsing into a
depression.

While Arnold and Bruce might be two rather extreme examples, they do illustrate
the developments within the area of measurement devices: more and more devices
are becoming available that measure an increasing part of our daily lives and well-
being. Performing such measurements around one’s self, quantifying one’s current
state, is referred to as the quantified self, which we will define more formally in
the next section. This book aims to show how machine learning, also defined more
precisely in this chapter, can be applied in a quantified self setting.

1.1 The Quantified Self

The term quantified self does not originate from academia, but was (to the best of
our knowledge) coined by Gary Wolf and Kevin Kelly in Wired Magazine in 2007.
Melanie Swan [114] defines it as follows:

Definition 1.1 The quantified self is any individual engaged in the self-tracking of
any kind of biological, physical, behavioral, or environmental information. There is
a proactive stance toward obtaining information and acting on it.

When considering our two example individuals, Arnold would certainly be a
quantified self. Bruce however, is not necessarily driven by a desire to obtain infor-
mation, more by a better way of managing his diseases. Throughout this book we are
not interested in this proactive stance, but in people that perform self-tracking with
a certain goal in mind. We therefore deviate slightly from the definition provided
before:

Definition 1.2 The quantified self is any individual engaged in the self-tracking of
any kind of biological, physical, behavioral, or environmental information. The self-
tracking is driven by a certain goal of the individual with a desire to act upon the
collected information.

What data precisely falls under the label quantified self is highly dependent on
the rapid development of novel measurement devices. An overview provided by
Augemberg [9] demonstrates the wealth of possibilities (Table1.1). To what extent
people track themselves varies massively, from monitoring the personal weight once
a week to extremes that are inspired by projects such as the DARPA’s LifeLog. For
example, in 2004 Alberto Frigo started to take photos of everything he has used
with his right hand, captured his dreams, songs he listened to, or people who he has
met—the website 2004–2040.com is the mind-boggling representation of this effort.

Let us focus a bit on how widespread the quantified self is in society. Fox and
Duggan [47] report that two thirds of US citizens keep track of at least one health
indicator. Thus, following our definition, a large fraction of the US adult population

1.1 The Quantified Self 3

Table 1.1 Examples of quantified self data (cf. Augemberg [9], taken from Swan [114])

Type of measurement Examples

Physical activities miles, steps, calories, repetitions, sets, METs (metabolic
equivalents)

Diet calories consumed, carbs, fat, protein, specific
ingredients, glycemic index, satiety, portions,
supplement doses, tastiness, cost, location

Psychological states and traits mood, happiness, irritation, emotions, anxiety,
self-esteem, depression, confidence

Mental and cognitive states and traits IQ, alertness, focus, selective/sustained/divided
attention, reaction, memory, verbal fluency, patience,
creativity, reasoning, psychomotor vigilance

Environmental variables location, architecture, weather, noise, pollution, clutter,
light, season

Situational variables context, situation, gratification of situation, time of day,
day of week

Social variables influence, trust, charisma, karma, current role/status in
the group or social network

belongs to the group of quantified selves. Even if we restrict our definition to those
who use online or mobile applications or wearables for self tracking, the number of
users is high: An international consumer survey by GfK [50] in 16 countries states
that 33% of the participants (older than 15 years) monitor their health by electronic
means, China being in the lead with 45%. There are many indicators that the group
of quantified selves will continue to grow, one is, the number of wearables that is
expected to increase from325million in 2016 tomore than 800million in 2020 [110].

What drives these quantified selves to gather all this information? Choe et al. [38]
interviewed 52 enthusiastic quantified selves and identified three broad categories
of purposes, namely to improve health (e.g. cure or manage a condition, achieve
a goal, execute a treatment plan), to enhance other aspects of life (maximize work
performance, be mindful), and to find new life experiences (e.g. learn to increasingly
enjoy activities, learn new things). A similar type of survey is presented in [51] and
considers self-healing (help yourself to become healthy), self-discipline (like the
rewarding aspects of the quantified self), self-design (control and optimize yourself
using the data), self-association (enjoying being part of a community and to relate
yourself to the community), and self-entertainment (enjoying the entertainment value
of the self-tracking) as importantmotivational factors for quantified selves. They refer
to these factors as “Five-Factor-Framework of Self-Tracking Motivations”.

While Gimple et al. [51] study the goals behind the quantified self, Lupton [83]
focus on what she calls modes of self-tracking and distinguishes between private and
pushed self-tracking, the latter referring to situations in which the incentive to engage
in self-tracking does not come from the user himself but another party. This being
said, not only users themselves are interested in the data generated within the context
of the quantified self. Health and life insurances come to one’s mind immediately,

4 1 Introduction

they love to know as much as possible about the current health status and lifestyle
of a potential customer before underwriting an insurance contract. For insurance
companies, leveraging self-tracking data for personalized offerings is a natural next
step to questionnaire based assessments that currently employed. Insurers do not
have to force their customers to share their data, but can set financial incentives
to do so. Besides insurances and health providers, other companies are also keen
to tap into this data source. Companies, e.g. from the recreation industry, like to
understand user behavior and location to target their offerings. Only recently, “the
workplace has become a key site of pushed self-tracking, where financial incentives
or the importance of contributing to team spirit and productivity may be offered for
participating” [83].

Since self-tracking data can be misused or used in a way that is not fully in the
interest of a person, it is not surprising that users state the loss of privacy as their
main concern in this context. For example, in 2013 it was reported that a supermarket
chain in the UK used wearables to monitor their employees who in return (and again
not surprising) felt a lot of pressure. As said before, user profiling with respect to
health and fitness behavior will help companies to personalize their offerings. For
some users this might be beneficial, others might be excluded as customers, as is
obvious in the insurance and financial industry. Another very sensitive piece of the
quantified self data is location that can be abused for criminal purposes but also to
increase control by public authorities.

We are aware that an intensive, open, and broad discourse on self-tracking is
needed that puts the interest of individuals first. However, to discuss these risks,
personal concerns, and also the opportunities that come with the quantified self for
individuals and companies is far beyond the more technical and methodological
perspective of our book. A good starting point for this discussion is the book by Neff
and Nafus [89].

1.2 The Goal of this Book

Now that we know more about the quantified self, what do we seek to achieve with
this book? As you might have noticed, the quantified self can and will most likely
result in a huge amount of data being collected about individuals. An immediate
question that pops up is how to make sense of this data. Even enthusiasts such as
Arnold will not be able to oversee it all, and might miss valuable information. This
is where machine learning comes into play. Many definitions of machine learning
exist. In our case, we define machine learning as follows:

Definition 1.3 Machine learning is to automatically identify patterns from data.

This book aims at showing howmachine learning can be applied to quantified self
data; specifically to automatically extract patterns from collected data and to enable
a user to act upon insights effectively, which in turn contributes to the goal of the

1.2 The Goal of this Book 5

user. Let us make this a bit more concrete for our two fellows Arnold and Bruce by
illustrating potential situations and questions:

• Advising the training to make most progress towards a certain goal based on past
training outcomes

• Forecasting when a specific running distance will be feasible based on the progress
made so far and the training schedule

• Predict the next blood glucose level based on pastmeasurements and activity levels
• Determine when and how to intervene when the mood is going down to avoid a
spell of depression

• Finding clusters of locations that appear to elevate one’s mood

All these questions could be answered by extracting patterns from historical data.
An observant reader might ask at this point whether this is yet another book

in the area of machine learning among many others. The data from the quantified
self does however pose its own challenges, which requires dedicated algorithms and
data preparation steps. We will precisely focus on this area and take a more applied
stance. For more theoretical underpinning of algorithms the reader will be referred
to fundamental machine learning books such as Hastie et al. [57] and Bishop [18].

So what are the unique characteristics of machine learning in the quantified self
context? We identify five of them: (1) sensory data is noisy, (2) many measurements
are missing, (3) the data has a highly temporal nature, (4) algorithms should enable
the support of and interaction with users without a long learning period, and (5) we
collect multiple datasets (one per user) and can learn across them. Each of these
issues will be treated in this book. Note that the approaches we introduce here are
not limited to the development of applications for quantified selves, but that are
also relevant for a broader category of applications, such as predictive modeling for
electronic medical record data (think of a patient lying at the ICU for example).

1.3 Basic Terminology

Before explaining the formal notation used throughout this book, we will introduce
some terminology first. This is by no means meant to be complete, but will provide
a basic vocabulary that we can build upon. We will start with the introduction of
basic terms to describe aspects of data, followed by some basic machine learning
terminology.

1.3.1 Data Terminology

Datasets encompass different attributes such as the heart rate of a person or the num-
ber of steps per day. The most elementary part of data is in our case a measurement,
which is defined as follows:

6 1 Introduction

Definition 1.4 A measurement is one value for an attribute recorded at a specific
time point.

Measurements can have values of different data types; they can be numerical,
or categorical with an ordering (ordinal) or without (nominal). Let us consider an
example dataset associated with Arnold. The attributes are shown in Table1.2. The
time point is not considered to be part of the attributes (though listed for the sake
of completeness) as it is an inherent part of the measurement itself. For the other
variables, the speed and heart rate would be considered a numerical measurement.
The Facebook posts and activity type are both nominal attributes and the activity
level is ordinal.

Measurements frequently come in sequences, for instance a sequence of values
for the heart rate. This is what we call a time series:

Definition 1.5 A time series is a series of measurements in temporal order.

Time series often form the basis to interpret measurements. To exemplify the
notionof a time series, an example of data collected for eachof the attributes discussed

Table 1.2 Attributes in example dataset

Time point The time point at which the measurement took place (considered in hours for
this example)

Heart rate Beats per minute, integer value

Activity level Can be either low, medium or high

Speed Speed in kilometers per hour, real value

Facebook post A string representing the Facebook message posted

Activity type The type of activity: inactive, walking, running, cycling, gym

Table 1.3 Example dataset

Time point Heart rate Activity level Speed Facebook post Activity type

14:30 55 low 0 getting ready to hit
the gym

inactive

14:45 55 low 0 having trouble
getting off the couch

inactive

15:00 70 medium 5 walking to the gym,
it’s gonna be a great
workout, I feel it

walking

15:10 130 high 0 - gym

15:50 120 high 12 the gym didn’t do it
for me, running
home

running

16:15 130 high 35 still have energy, on
my bike now

cycling

1.3 Basic Terminology 7

in Table1.2 is shown in Table1.3. In the table, the columns represent the attributes
while the rows are the measurements performed at the indicated time points. Here,
one can consider the sequence [55, 55, 70, 130, 120, 130] as an example of a time
series for the attribute heart rate.

Now that we know the basic data terminology, let us move to the terminology of
machine learning.

1.3.2 Machine Learning Terminology

The field of machine learning is commonly divided into four types of learning prob-
lems: supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning. Except for semi-supervised learning, all these types of learn-
ing will be explored throughout this book in the context of the quantified self. Let us
look at them in a bit more detail. First, consider the definition of supervised learning
we adopt:

Definition 1.6 Supervised learning is the machine learning task of inferring a func-
tion from labeled training data (cf. [87]).

Let us return to the example of the dataset depicted in Table1.3. An example of a
supervised learning problemwould be to learn a function that determines the activity
type based on the other measurements at that same time point. Here, each row in the
table is a training example where the label (also known as the target or outcome) is
the activity type. We will refer to an individual training example as an instance to
stay in line with standard machine learning terminology. Attributes are also referred
to as variables or features. We will use these terms interchangeably. Different types
of supervised learning exist, which mainly depend on the type of variable that is
being predicted. Classification is the term used in case the predicted type of data is
categorical (e.g. the activity type for our example dataset) while regression is used
for numerical measurements (e.g. the heart rate).

Moving on to another type of learning problem, unsupervised learning is the
opposite of supervised learning:

Definition 1.7 In unsupervised learning, there is no target measure (or label), and
the goal is to describe the associations and patterns among the attributes (cf. [57]).

Examples of tasks within unsupervised learning that are considered in this book
are clustering and outlier detection. Since there is no desired outcome (or “teacher”)
available, these algorithms typically try to characterize the data, and make assump-
tions about certain properties of this characterization. For clustering, the algorithm
tries to group instances that share certain common characteristics given a definition
of similarity. For our example dataset, you might find a cluster of intense activities
and one with limited activities. In outlier detection, it is the goal to find points that
appear to deviate markedly from other members of the sample in which it occurs.

8 1 Introduction

The third type of learning, semi-supervised learning [33], combines the supervised
and unsupervised approach of learning:

Definition 1.8 Semi-supervised learning is a technique to learn patterns in the form
of a function based on labeled and unlabeled training examples.

Since generating labeled training examples can take significant efforts, semi-
supervised learning also makes use of unlabeled training examples to learn a target
function. For example, assume we want to infer the mood of a user based on his
smartphone usage patterns. To come up with a set of labeled training examples you
would need to require the user to manually record his mood for a few weeks, which
obviously is associated with some effort. Without too much effort, you might at the
same time collect data on smartphone usage for other time periods for which you do
not havemood ratings, an unlabeled set that could still provide a valuable contribution
to the learning task. In many cases (e.g. face, speech, or object recognition) we have
only few labeled training examples and vast amounts of unlabeled training data
(think of all photos available on the Internet). That is why semi-supervised learning
is currently an important topic in machine learning.

Finally, we consider reinforcement learning. The definition we use is similar
to [112]:

Definition 1.9 Reinforcement learning tries to find optimal actions in a given situa-
tion so as to maximize a numerical reward that does not immediately come with the
action but later in time.

In reinforcement learning, the learner is not told which actions to take as in
supervised learning but instead must discover which actions yield the highest reward
over time by trying them. We can see that this is a bit different from our previous
categories as we no longer immediately know whether we are right or not (like
supervised learning) but we do in the end get a reward signal which we want to
optimize given a policy (which specifies when to do what). For Arnold, a reward
could for instance be an improvement of his long-term shape while the action that
we try to learn is to give appropriate daily advice depending on Arnold’s state.

1.4 Basic Mathematical Notation

While we focus more on applying techniques rather than explaining all of the fun-
damentals, we do aim to provide understanding of the algorithms to a certain extent.
To provide this understanding, a consistent mathematical notation can greatly assist
us. This is introduced in this section. In our mathematical notation, we use the same
notation as introduced by Hastie et al. [57]. As a basic starting point, the input vari-
ables are denoted by X. Here, X could be (and most likely is) a vector containing
multiple variables. We assume that there are p such variables. Think of our previous
example where we aimed to predict the activity type. The inputs were heart rate,

1.4 Basic Mathematical Notation 9

activity level, speed, and the Facebook post text. Each of the individual p variables
can be accessed by a subscript, i.e. for the kth variable Xk . For instance, X1 denotes
the variable heart rate in our example. In the case of supervised learning, the outputs
will be denoted by Y for regression problems or G for classification. When there are
multiple variables to predict we will again use a subscript to identify one specific
variable. An observation ofX—that is, a single instance of the data (with the observed
values for all variables)—is denoted in lowercase: xj. It represents a column vector
of observations of our p variables where j identifies the instance. j can take the values
j = 1, . . . ,N with N being the number of observations. For example:

x1 =

⎡
⎢⎢⎢⎢⎣

0
45
low
0

“getting ready to hit the gym”

⎤
⎥⎥⎥⎥⎦

If we want to refer to a specific value of one variable within the instance we will use
the notation xkj where j refers to the instance and k = 1, . . . , p (p is the number of
variables) to the position of the variable in the vector (e.g. x21 = 45). Here, depending
on the nature of the instances, j could also represent the notion of time as the instances
might form a sequence of measurements over time, i.e. j = tstart, . . . , tend assuming
a discrete time scale. Given that we have p elements in our vector, we can represent
an entire dataset as a matrix (similar to the table notation we have seen before).
This will result in an N × p matrix. As xj is defined to be a column vector (our
example x1 was as well) each row j is the transposed version of xj, i.e. xTj . This
matrix will be noted in boldface with X. Sometimes we use an index to identify a
specific dataset (e.g. the dataset originating from Arnold or Bruce), we note this as
Xi. If the instances represent a sequence of measurements over time we will use
XT to denote a time series training set (this will be an important distinction for
later chapters). If we omit the T we make no assumption about the ordering. The
same conventions as we have just introduced are used for the targets for the case of
supervised learning. The entire set of targets for all instances are specified by Y and
G for numerical and categorical targets respectively. We have very distinct cases for
numerical and categorical cases as the learning algorithms for both cases typically
work very differently. The predicted output of our supervisedmodel over all instances
will be denoted as Ŷ or Ĝ. Individual targets and predictions for the instance i are
expressed as yi and gi for the target values and ŷi and ĝi for the predictions. Our
target output for our input vector x1 would be:

g1 =
[
inactive

]

Hence, we end up with a training dataset of the form (xj, yj) or (xj, gj) where
j = 1, . . . ,N . An overview of the notation is presented in Table1.4.

10 1 Introduction

Table 1.4 Mathematical notation

Notation Explanation

Dataset representation

Xk A variable (or attribute) in our dataset, k is the index of the variable

XT
i Matrix representing a dataset containing Ni instances with p variables. The i allows

us to refer to a specific dataset (e.g. of a specific person) while the T indicates a
dataset with a temporal ordering. If T is omitted no assumption about the ordering
within the dataset is made

xkj The jth observation in the dataset. k refers to the specific variable within the
observation. If k is omitted this concerns an observation of the entire vector of
variables

Categorical target representation (optional)

G A categorical target variable in our dataset

G Similar to XT
i (and the same additional super- and subscripts can be used), except

that this refers to the categorical targets for our dataset (if present). It contains N
instances

gj The jth instance of the categorical target or row in G

Classifier prediction representation

ĝj The prediction of our classifier of the target for the jth row in the dataset

Ĝ The entire set of categorical predictions of our classifier

Numerical target representation (optional)

Y A numerical target variable in our dataset

Y Similar to XT
i (and again the same additional super- and subscripts can be used),

except that this refers to the numerical targets for our dataset (if present). It contains
N instances

yj The jth instance of the numerical target or row in Y

Numerical prediction representation

ŷj The prediction of our model of the numerical targets for the jth row in the dataset

Ŷ The entire set of numerical predictions of our model

1.5 Overview of the Book

Figure1.1 shows the main aspects of the book. The yellow box encompasses appli-
cations that collect data about the quantified self in various ways: user responses to
questionnaires posed to the user in a certain context (ecological momentary assess-
ment), data on usage behavior, data fromphysical sensors (think of an accelerometer),
and audiovisual information obtained through cameras or microphones. Additional
sensors which are not part of a smartphone or a wearable can also provide data.
Examples are indoor positioning sensors, weather forecasts, or the medical history
of a person. To use all of this data we need to do some pre-processing before we can
actually perform themachine learning tasks we aim to do. This is indicated by the red
box. Smoothing of the data, handling missing values and outliers, and the generation
of useful features are the core aspects in this context. Based on the resulting dataset,

1.5 Overview of the Book 11

Fig. 1.1 Various elements relevant to make sense out of quantified self data

we can perform varying types of analyses, e.g. : create models that can be used for
prediction of unknown values using a variety of machine learning techniques, detect
interesting patterns and relations in the data (e.g. clusters), and create visualizations
to gain insights into the data. These analytical goals are shown in the green box.
Finally, we can start using the knowledge we have gained (the blue box) in order to
derive recommendations, inform decisions, and automate and communicating them
with various stakeholders (in the context of Bruce, think of Bruce himself, his ther-
apist, etc.). In accordance with this overview, this book has been divided into three
main parts:

• The first part covers the pre-processing of the data and feature generation. We will
start by explaining the basics of sensory data and introduce the dataset we use as
a case study throughout nearly all chapters. Next, we explain how to smooth the
data and remove obvious outliers. Finally, we will go into depth on the extraction
of useful features from the cleaned data.

• The second part explains all relevant machine learning techniques that can help us
to reach our analytical goals and also allow us to “close the loop”, i.e. help us to use
the outcomes of the analysis to support the user more effectively. The first topic
we will cover is the clustering of the data. Here, we will focus on clustering of the
data of a single user, but also the clustering on a higher level, namely the clustering
over different users. We will then elaborate on the theoretical foundations behind

12 1 Introduction

supervised learning, and cover supervisedmachine learning approaches, both those
that exploit the temporal dimension of data and those that do not. We conclude
with an introduction of reinforcement learning techniques that allow us to learn
how to effectively intervene and support a user in achieving his or her goals.

• Finally, the third part is a discussion about avenues for future developments.

With this book, we aim for different target audiences, and we want to provide a
reader’s guide for the different groups. We have identified three target audiences
(please do not be offended if you do not match any of these profiles):

• Scholars and students without prior background in machine learning: we would
suggest to read the whole book to get up to speed on both the machine learning
techniques and all specific issues concerning the quantified self. In case you are
unfamiliar with the mathematical notations used throughout the book, we recom-
mend [42], pages 601–635 as a brief overview of useful mathematical concepts
before reading the book. If you want to have a light read and do not care about the
principles behind the techniques we have shown, you can also just consider the
introductions of the various chapters and the case study.

• Scholars and students with prior background in machine learning: for those who
are familiar with the concepts within the field of machine learning, we certainly
recommend part I, but would recommend the reader to skip the explanation of the
basic machine learning techniques in Chap.7, which will already be familiar to
you. The learning setting (initial section of the chapters) and the case study are
still very relevant.

• Professionals: if you are a professional who is more focused on the implementa-
tion of quantified self applications which embed machine learning techniques, we
recommend reading the basis introductions of the different techniques and mainly
focus on the case study and the associated code. The case study follows all our
recommendations to develop a successful application.

Throughout the book, we make extensive use of a case study. All the code that we
have written related to the case study is available on a per-chapter basis, both in
Python and in R. It covers nearly all the algorithms we explain in the book. The code
of the examples we use to explain the basics of the machine learning algorithms is
available as well. All code can be found on the website.1 We also provide exercises,
which can be found at the end of every chapter throughout the book. These are
questions about the chapter, but also about techniques we did not cover but consider
to be relevant.

1ml4qs.org.

http://dx.doi.org/10.1007/978-3-319-66308-1_7

Part I
Sensory Data and Features

Chapter 2
Basics of Sensory Data

Before we discuss some of the details of the various machine learning approaches,
we will focus on the topic of sensory data itself. Since rapid technical advances
are being made in this area, we will refrain from explaining the workings of each
potentially useful sensor out there. Rather, we will dive into a representative dataset
used throughout the book. The dataset originates from crowdsignals1 which has
generously been made available for experimentation for us as authors and for you as
reader of our book. The dataset has been collected using an application that gathers
data from both a smartphone and a smart watch. In addition, users were asked to
label the activities they were conducting (e.g. “I am currently running”). We will
first describe the measurements included in the dataset. We will then show how to
move from the raw data we collect to a dataset usable in machine learning tasks. This
process is described in the context of the crowdsignals dataset but is representative for
most of the sensory datasets we have worked with. Finally, we explore the resulting
dataset and identify suitable machine learning tasks.

2.1 Crowdsignals Dataset

An overview of the sensory data in the crowdsignals dataset is shown in Table2.1. In
the table, we focus on the sensors and user labels categories, for the others, please
explore the full crowdsignals dataset description,which is available via the aforemen-
tioned website. We were not able to include all sensor and user label measurements
in the experiments we present in this book. Those that have been included are marked
with a “yes” in the last column.

1http://www.crowdsignals.io.

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_2

15

http://www.crowdsignals.io

16 2 Basics of Sensory Data

Table 2.1 Sensors and labels in crowdsignals dataset

Sensor Purpose Device(s) Values Time point
/ Interval

Used

Sensors

Accelerometer The acceleration
of the device

phone/ watch x, y, and z
acceleration

time point yes

Gyroscope The angular
speed of the
device

phone/ watch x, y, and z angular
speed

time point yes

Magnetometer The
magnetometer
value of the
device

phone/ watch x, y, and z
magnetometer
value

time point yes

Heart rate The heart rate of
the user

watch heart rate (beats
per minute)

time point yes

Temperature Ambient
temperature

phone/ watch temperature (in
oC)

time point no

Light The light
intensity

phone/ watch light intensity (in
lux)

time point yes

Pressure The current
pressure

phone/ watch pressure (in
mercury millibars)

time point yes

Humidity The current
humidity

phone/ watch relative humidity
(%)

time point no

Proximity Distance of user
from phone

phone distance (meters) time point no

Audio record Record of audio
obtained via the
microphone

phone audio recording time point no

User labels

Activity label Record of the
activity a user is
conducting

phone label (walking,
running,)

interval yes

A huge variety of sensors exist. Three popular sensors do dominate the landscape
of smartphone sensors and are also included in our dataset: the accelerometer, mag-
netometer, and gyroscope. The accelerometer measures the changes in forces upon
the phone on the x, y, z-plane. The orientation of the phone compared to the “down”
direction (the earth’s surface) and the angular velocity are measured by means of the
gyroscope (measured on the same three axes as the accelerometer does). Finally, the
magnetometer measures the x-, y-, and z-orientation relative to the earth’s magnetic
field. Micro-electromechanical systems (MEMS) form the technical basis of these
sensors. MEMS employ the effect that the resistance of semiconductors is stress-
sensitive, or put in other words, changes when mechanical forces are applied—this
phenomenon discovered in the 1950s is called piezoresistance and the basis of a large
industry today [22].

2.1 Crowdsignals Dataset 17

Table 2.2 Snapshot heart rate data

Sensor_type Device_type Timestamps Rate

heartrate smartwatch 1454956086325639687 175

heartrate smartwatch 1454956086684549167 176

heartrate smartwatch 1454956087523516770 175

Table 2.3 Snapshot label data

Sensor_type Device_type Label Label_start Label_end

interval_label smartphone On Table 1454956132985999872 1454956366574000128

interval_label smartphone On Table 1454956393088000000 1454956578385999872

interval_label smartphone On Table 1454956608515000064 1454956813323000064

interval_label smartphone Sitting 1454956894057999872 1454957092968000000

Of course, there are many more sensors used in today’s smartphones that you are
familiar with. Just think of a GPS signal that measures your position by means of
your distance to a number of satellites of which the position is known. For a full
overview of sensors, we refer the reader to books dedicated to modern sensors, for
example [48].

Let us have a look at how the data has been recorded. All data is stored with a
reference to when the data was measured. Some recordings cover measurements for
a certain period or interval while others are only valid for a specific point in time.
For example, the heart rate is measured for a specific time point while the label
provided by the user is specified for an interval (I was walking between time point t
and time point t ′). In Table2.2, we can see a snapshot of the heart rate data, whereas
an example for the label data is shown in Table2.3. Time points are expressed in
nanoseconds since the start of time (which is January 1st 1970 following the UNIX
convention).

We are still far away from the specification of a dataset we have seen in Chap. 1,
whereXT denotes amatrixwith rows representing themeasurements of an individual
time point (if the dataset has a temporal nature, which we clearly have here). Next,
we will show how we move from our current dataset to the desired matrix format.

2.2 Converting the Raw Data to an Aggregated
Data Format

In order to convert the temporal data, we first need to determine the time step size
we are going to use in our dataset. This is also referred to as the level of granularity
(selecting a �t). We could say that we want to have instances covering a second
of data for example, or even a minute. The selection of the step size depends on a

http://dx.doi.org/10.1007/978-3-319-66308-1_1

18 2 Basics of Sensory Data

variety of factors, including the task, the noise level, the available memory and cost
of storage, the available computational resources for the machine learning process,
etcetera. Once we have selected this step size we can create an empty dataset.

We start with the earliest time point observed in our crowdsignals measurements
and generate a first row xtstart . Iteratively, we create additional rows for the following
time steps by taking the previous time step and adding our step size, e.g. xtstart+�t .
Each row xt represents a summary of the values encountered in the interval defined
by the time step it was created for until the next time step, i.e. [t, t+�t).We continue
until we have reached the last time step in our dataset. Next, we should identify the
columns in our dataset (our attributes) that we want to aggregate. As we have seen,
we can distinguish between numerical values (e.g. the heart rate) and categorical
values (e.g. the labels) and need different approaches for both. For the former, we
create a single column for each variable we measure while for the categorical values
we create a separate column for each possible value. Of course, for the categorical
attributes we could also include a single column where each row would contain a
single value for that measurement. However, since we are discretising time steps it is
very likely that we will encounter multiple values for our categorical measurement
per time step (e.g. the user performing the activity driving and walking within the
same time step). We cannot accommodate for this if we can just insert a single value:
which one should we select?

Oncewehave defined the entire empty dataset,we are ready to derive the values for
each attribute at each discrete time step (i.e. each row). We select the measurements
in our crowdsignals data that belong to the specific discrete time step (when either
the associated time stamp falls in the window, or the interval expressed falls (partly)
within it) and aggregate the relevant values. We can aggregate numerical values by
averaging the relevant measurements (e.g. for heart rate) or we can sum them up
(e.g. when the measurements concern a quantity) or use other descriptive metrics
from statistics such as median or variance. Since often it is not clear a priori which
type of aggregation to choose, you could also use different measures and later let
machine learning techniques select relevant features. For categorical values we can
count whether at least one measurements of that value has been found in the interval
(binary) or we can count the number of measurements that have been found for the
value (sum).

In our case we have selected the averaging method for numerical values and the
binary method for categorical attributes. When taking a �t of 1day and aggregating
the data we have seen in Tables2.2 and 2.3 we would end up with the table shown in
Table2.4. As mentioned before, all these approaches have been implemented and are
available on the website accompanying the book, including the code used to process
the crowdsignals dataset.

2.3 Exploring the Dataset 19

Table 2.4 Example resulting dataset

Time Heart_rate Label On Table Label Sitting

2016-02-08 19:28:06 175.333 1 1

2016-02-09 19:28:06 - 0 0

2.3 Exploring the Dataset

Let us consider the entire dataset with the sensors we have marked as “yes” in
Table2.1. We have a set of measurements that covers approximately two hours of
labeled data of a participant. If we take a granularity of 1 minute, we obtain a dataset
that is shown in Fig. 2.1. The dataset contains 133 instances (i.e. 133 minutes). We
can see that we have quite a nice dataset, although the data does seem a bit too
smooth, especially regarding the accelerometer, gyroscope, and the magnetometer

Fig. 2.1 Processed CrowdSignals data (�t = 60 s)

20 2 Basics of Sensory Data

data. To bemore specific,we know thatwalking should provide uswith some periodic
changes in the accelerometer data (usually with a frequency in the order of 1Hz) but
this information is lost as a result of the aggregation. If we consider a more fine
grained dataset with �t = 0.25s, i.e. four instances per second, we are likely to
capture the stepping motion. The result is shown in Fig. 2.2 and contains a total of
31838 data points. Indeed we see a lot more variance in this data. Previously, we
had just aggregated too much and lost the fine details in our dataset that might be
of great value. The choice of �t highly depends on the task. For example, if you
want to determine the step frequency of a person, your �t should be significantly
smaller than the corresponding step period. On the other, if you want to learn about
the motion state of a person, e.g. walking or sitting, �t = 1 minute might not only
be sufficient but also optimal with respect to the predictive capabilities of a model
based on the aggregated data.

We have created some summary statistics of the two datasets with different �t
in Table2.5 to signify the differences. In addition, Fig. 2.3 shows the differences of
the accelerometer data in a boxplot. We see that the extreme values and standard
deviation show substantial differences. We observe higher standard deviation and

Fig. 2.2 Processed CrowdSignals data (�t = 0.25s)

2.3 Exploring the Dataset 21

Ta
bl
e
2.
5

St
at
is
tic

s
of

pr
oc
es
se
d
da
ta
se
t(
fir
st
nu

m
be
r
lis
te
d
is
fo
r
�
t
=

60
s,
se
co
nd

va
lu
e
fo
r
�
t
=

0.
25

s)

N
um

er
ic
al

A
ttr
ib
ut
e

M
is
si
ng

(%
)

M
ea
n

St
an
da
rd

de
vi
at
io
n

M
in
im

um
M
ax
im

um

ac
c_
ph
on
e_
x

0.
0

0.
0

1.
1

1.
1

4.
2

4.
7

−9
.1

−1
1.
8

9.
0

17
.1

ac
c_
ph
on
e_
y

0.
0

0.
0

−0
.9

−0
.9

5.
6

6.
4

−1
0.
1

−1
5.
6

9.
8

14
.9

ac
c_
ph
on
e_
z

0.
0

0.
0

2.
0

2.
0

4.
7

5.
4

−5
.3

−1
1.
3

9.
6

11
.4

ac
c_
w
at
ch
_x

7.
5

8.
8

2.
0

2.
1

4.
9

5.
8

−5
.8

−1
2.
2

9.
6

22
.9

ac
c_
w
at
ch
_y

7.
5

8.
8

−5
.2

−5
.2

2.
4

3.
5

−9
.1

−2
0.
6

0.
2

10
.0

ac
c_
w
at
ch
_z

7.
5

8.
8

3.
6

3.
6

2.
7

4.
0

−3
.4

−1
2.
6

9.
2

13
.7

gy
r_
ph
on
e_
x

0.
0

0.
0

0.
0

0.
0

0.
0

0.
6

−0
.1

−4
.0

0.
1

5.
7

gy
r_
ph
on
e_
y

0.
0

0.
0

0.
0

0.
0

0.
0

0.
4

−0
.1

−5
.0

0.
2

6.
5

gy
r_
ph
on
e_
z

0.
0

0.
0

0.
0

0.
0

0.
0

0.
5

−0
.2

−5
.4

0.
1

5.
9

gy
r_
w
at
ch
_x

8.
3

8.
9

0.
0

0.
0

0.
1

0.
7

−0
.8

−6
.7

0.
1

6.
3

gy
r_
w
at
ch
_y

8.
3

8.
9

0.
0

0.
0

0.
0

0.
6

−0
.1

−5
.5

0.
1

5.
0

gy
r_
w
at
ch
_z

8.
3

8.
9

0.
0

0.
0

0.
0

0.
8

−0
.1

−7
.0

0.
3

5.
5

hr
_w

at
ch
_r
at
e

7.
5

76
.4

11
9.
2

12
1.
0

35
.5

35
.2

65
.4

58
.0

18
0.
7

18
8.
0

lig
ht
_p
ho
ne

_l
ux

0.
0

10
.4

27
8.
34

28
1.
5

59
6.
3

22
20
.9

0.
0

0.
0

31
09
.3

11
89
85
.0

m
ag
_p
ho
ne
_x

0.
0

0.
0

−1
3.
7

−1
3.
5

46
.9

50
.6

−1
21
.8

−1
56
.4

11
5.
5

12
6.
6

m
ag
_p
ho
ne
_y

0.
0

0.
0

−3
.7

−3
.8

44
.9

47
.9

−1
39
.7

−1
65
.4

80
.7

96
.8

(c
on
tin

ue
d)

22 2 Basics of Sensory Data

Ta
bl
e
2.
5

(c
on
tin

ue
d)

N
um

er
ic
al

A
ttr
ib
ut
e

M
is
si
ng

(%
)

M
ea
n

St
an
da
rd

de
vi
at
io
n

M
in
im

um
M
ax
im

um

m
ag
_p
ho
ne
_z

0.
0

0.
0

7.
5

7.
6

35
.2

40
.0

−6
1.
2

−1
06
.4

16
4.
1

19
8.
0

m
ag
_w

at
ch
_x

8.
3

8.
9

−9
.2

−9
.1

17
.7

26
.1

−6
6.
0

−1
38
.0

31
.7

12
2.
8

m
ag
_w

at
ch
_y

8.
3

8.
9

27
.2

27
.3

29
.7

39
.6

−4
7.
6

−1
51
.3

16
3.
6

29
7.
4

m
ag
_w

at
ch
_z

8.
3

8.
9

−2
0.
0

−2
0.
0

24
.2

31
.6

−1
30
.3

−1
86
.7

51
.4

14
9.
7

pr
es
s_
ph
on
e

_p
re
ss
ur
e

0.
0

10
.3

10
22
.3

10
22
.3

8.
3

8.
3

10
11
.0

10
08
.6

10
29
.4

10
33
.5

C
at
eg
or
ic
al

A
ttr
ib
ut
e

V
al
ue

Pe
rc
en
ta
ge

of
ca
se
s
(%

)

la
be
l

O
nT

ab
le

9.
0

7.
8

la
be
l

Si
tti
ng

10
.5

8.
6

la
be
l

W
as
hi
ng
H
an
ds

3.
8

2.
0

la
be
l

W
al
ki
ng

18
.8

14
.7

la
be
l

St
an
di
ng

10
.5

7.
3

la
be
l

D
ri
vi
ng

14
.3

12
.4

la
be
l

E
at
in
g

8.
3

6.
8

la
be
l

R
un
ni
ng

4.
5

3.
8

2.3 Exploring the Dataset 23

(a) t = 60 seconds (b) t = 0.25 secondsΔ Δ

Fig. 2.3 Boxplots of all accelerometer data

more extreme values for the more fine grained dataset, which is to be expected given
our averaging approach to compute the values for a specific discrete time step. This
is also reflected in the percentage of data points associated with each of the labels.
In terms of missing values we do not see many differences for the numerical values,
except for the heart rate. It seems that the sampling rate of the heart rate values is
lower than the level of granularity. We will see in the next chapter howwe can handle
these missing values. Based on the insights we have just gained, we select the most
fine grained dataset for the remainder of this book as we feel that we would lose too
much information and also valuable training data if wewere to use the coarse-grained
variant.

2.4 Machine Learning Tasks

Given that we have defined and created our dataset now, we should also define some
goals we want to achieve with the application of machine learning techniques to
the above dataset. In general, we can set goals in sync with the different learning
approaches we have briefly discussed in Sect. 1.3.2. Focusing on supervised learning
we define two tasks: (1) a classification problem, namely predicting the label (i.e.
activity) based on the sensors, and (2) a regression problem, namely predicting the
heart rate based on the other sensory values and the activity. In the rest of the book
we will see how accurate we can perform these two tasks with our dataset.

http://dx.doi.org/10.1007/978-3-319-66308-1_1

24 2 Basics of Sensory Data

2.5 Exercises

2.5.1 Pen and Paper

1. When we measure data using sensory devices across multiple users we often see
substantial differences between the sensory values we obtain. Identify at least
three potential causes for these differences.

2. We have seen that we can make trade-offs in terms of the granularity at which we
consider the measurements in our basic dataset. We have shown the difference
between a granularity of �t = 0.25s and �t = 60 s. We arrived at a choice for
�t = 0.25s for our case, but let us think a bit more general: think of four criteria
that play a role in deciding on the granularity for the measurements of a dataset.

3. We have identified two tasks we are going to tackle for the crowdsignals data.
Think of at least two other machine learning tasks that could be performed on the
crowdsignals dataset and arguewhy they could be relevant to support a user (when
doing so, keep in mind the different learning approaches discussed in Sect. 1.3.2).

2.5.2 Coding

1. Create your own dataset for the quantified self by using your smartphone. You
can create the dataset using measurement apps on your smartphone (e.g. at the
time of writing Funf, SensorLog, phybox, or SensorKinetics) or other devices.
Include repeated periods with different activities (please incorporate some we
have seen in the crowdsignal data and some that are different) and study the
variation you see in the sensory values. Be sure to include periods without any
specific activities to study the background noise of the sensors. Log the intervals
at which you performed the different activities.

a. Plot and describe the data you obtain using the libraries provided with the
book.

b. Try different values for �t and describe the differences you see.

2. Compare the sensory values you have obtained with your measurements to those
in the crowdsignals dataset over comparable activities. What would be the best
way to compare the values given that the valuesmight result fromdifferent sensors
with different scales? And how different are the two datasets?

3. Find a dataset on the web that covers data from multiple users (for a list of data
sources check the book’s website). Note, that there are quite a few datasets that
come along with an accompanying scientific article, see for example Anguita
et al. [7], Banos et al. [10], or Zhang et al. [131]. Study and describe the variation
you see in terms of sensory values over different users. Plot some differences that
stand out and identify potential causes for these differences (e.g. by considering
the ones you listed under the pen and paper exercises).

http://dx.doi.org/10.1007/978-3-319-66308-1_1

Chapter 3
Handling Noise and Missing Values
in Sensory Data

In the previous chapter we have aggregated the sensory data and put it neatly into
a matrix X. By doing so, we are able to reduce some noise. However, it is likely
that X still contains faulty or noisy measurements that pollute our data and hinder
us from working on the machine learning tasks defined in Sect. 2.4. For instance,
GPS sensors might be imprecise and the estimated position might jump between the
northern and southern hemisphere. The same holds for accelerometers and nearly
all types of sensors. Furthermore, some measurements could be missing, e.g. the
heart rate monitor might temporarily fail. Although a variety of machine learning
techniques exist that are reasonably robust against such noise, the importance of
handling these issues is recognized in various research papers (see e.g. [128]). We
have three types of approaches at our disposal that can assist us here:

1. We can use approaches that detect and remove outliers from the data.
2. We can imputemissing values in our data (that could also have been outliers that

were removed).
3. We can transform our data in order to identify the most important parts of it.

We will consider a number of approaches that fall within these categories. An
overview of them is shown in Table3.1 including some characteristics and a very
brief summary. Note that nearly all these approaches are tailored towards numerical
attributes, except for the distance based outlier detection algorithms and the mode
and model-based imputation.

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_3

25

http://dx.doi.org/10.1007/978-3-319-66308-1_2

26 3 Handling Noise and Missing Values in Sensory Data

Ta
bl
e
3.
1

M
et
ho
ds

di
sc
us
se
d
in

th
is
ch
ap
te
r

A
pp
ro
ac
h

Pu
rp
os
e

Sp
ec
ifi
c
fo
r
X
T

N
um

be
r
of

at
tib

ri
bu
te
s

co
ns
id
er
ed

B
ri
ef

su
m
m
ar
y

C
ha
uv
en
et
s
cr
ite

ri
on

O
ut
lie

r
de
te
ct
io
n

N
o

1
Id
en
tif
y
va
lu
es

fo
r
an

at
tr
ib
ut
e
th
at
ar
e
un

lik
el
y
gi
ve
n
a

si
ng

le
no

rm
al
di
st
ri
bu
tio

n
to

de
sc
ri
be

th
e
da
ta
.

M
ix
tu
re

m
od

el
-b
as
ed

ou
tli
er

de
te
ct
io
n

O
ut
lie

r
de
te
ct
io
n

N
o

1
Id
en
tif
y
va
lu
es

fo
r
an

at
tr
ib
ut
e
th
at
ar
e
un

lik
el
y
gi
ve
n
a

co
m
bi
na
tio

ns
of

di
st
ri
bu
tio

ns
to

de
sc
ri
be

th
e
da
ta
.

Si
m
pl
e
di
st
an
ce
-b
as
ed

ou
tli
er
de
te
ct
io
n
O
ut
lie

r
de
te
ct
io
n

N
o

1,
..

.,
p

Id
en
tif
y
in
st
an
ce
s
w
ith

a
gr
ea
td

is
ta
nc
e
to

ot
he
r
po

in
ts
.

L
oc
al
ou

tli
er

fa
ct
or

O
ut
lie

r
de
te
ct
io
n

N
o

1,
..

.,
p

Id
en
tif
y
in
st
an
ce
s
th
at
ha
ve

a
lo
w
er

lo
ca
ld

en
si
ty

th
an

its
ne
ig
hb
or
in
g
po
in
ts
.

M
ea
n
im

pu
ta
tio

n
M
is
si
ng

va
lu
e

im
pu

ta
tio

n
N
o

1
Im

pu
te
th
e
m
ea
n
va
lu
e
fo
r
an

at
tr
ib
ut
e
fo
r
an

un
kn
ow

n
va
lu
e
or

ou
tli
er
.

M
ed
ia
n
im

pu
ta
tio

n
M
is
si
ng

va
lu
e

im
pu

ta
tio

n
N
o

1
Im

pu
te
th
e
m
ed
ia
n
va
lu
e
fo
r
an

at
tr
ib
ut
e
fo
r
an

un
kn
ow

n
va
lu
e
or

ou
tli
er
.

M
od
e
im

pu
ta
tio

n
M
is
si
ng

va
lu
e

im
pu

ta
tio

n
N
o

1
Im

pu
te
th
e
m
od
e
va
lu
e
fo
r
an

at
tr
ib
ut
e
fo
r
an

un
kn
ow

n
va
lu
e
or

ou
tli
er
.

In
te
rp
ol
at
io
n-
ba
se
d
im

pu
ta
tio

n
M
is
si
ng

va
lu
e

im
pu

ta
tio

n
Y
es

1
Im

pu
te
th
e
va
lu
e
fo
r
an

at
tr
ib
ut
e
by

ex
tr
ap
ol
at
in
g
th
e

pr
ev
io
us

an
d
ne
xt

m
ea
su
re
m
en
t.

M
od
el
-b
as
ed

im
pu
ta
tio

n
M
is
si
ng

va
lu
e

im
pu

ta
tio

n
N
o

1
Im

pu
te
th
e
va
lu
e
fo
r
an

at
tr
ib
ut
e
by

cr
ea
tin

g
a
m
od

el
to

pr
ed
ic
ti
t.

K
al
m
an

fil
te
r

O
ut
lie

r
de
te
ct
io
n

&
M
is
si
ng

va
lu
e

im
pu

ta
tio

n

Y
es

1,
..

.,
p

E
st
im

at
e
ex
pe
ct
ed

va
lu
es

ba
se
d
on

hi
st
or
ic
al

ob
se
rv
at
io
ns

an
d
im

pu
te
th
em

w
he
n
va
lu
es

ar
e
to
o

de
vi
an
t.

L
ow

pa
ss

B
ut
te
rw

or
th

fil
te
r

T
ra
ns
fo
rm

at
io
n

Y
es

1
R
em

ov
e
pe
ri
od

ic
ir
re
le
va
nt

da
ta
of

a
si
ng

le
at
tr
ib
ut
e

ov
er

tim
e.

Pr
in
ci
pa
lC

om
po
ne
nt

A
na
ly
si
s

T
ra
ns
fo
rm

at
io
n

N
o

p
C
on

de
ns
e
m
os
to

f
th
e
va
ri
ab
ili
ty

of
th
e
da
ta
in

a
se
to

f
ne
w
fe
at
ur
es
.

3.1 Detecting Outliers 27

3.1 Detecting Outliers

Whenweget startedwith our datasetwe are potentially confrontedwith someextreme
values that are highly unlikely to occur. We will call these outliers. When working
with data from physical sensors as in our case, outliers are very likely. We define an
outlier as follows:

Definition 3.1 An outlier is an observation point that is distant from other observa-
tions (cf. [53]).

Observations in the sense of this definition can be two different things: we can
consider single values of one attribute X j as an observation (x j

i), or we can con-
sider complete instances as an observation (xi). We will see that some approaches
we discuss can only handle single attributes while others can cope with complete
instances.

We can have two types of outliers: those caused by a measurement error and
those simply caused by variability of the phenomenon that we observe or measure.
Typically, we are interested in getting a full picture on what was caused by the
phenomenon under study while we try to get rid of the measurement errors. When
considering our example Arnold, a measurement of a heart rate of 300 would be
considered a measurement error (unless our friend has some form of superpowers)
whereas a heart rate of 195 might be very uncommon but could simply be a measure-
ment of Arnold trying to push his limits. While we would clearly like to remove the
measurement errors or replace them with more realistic values (which will hopefully
yield a better performance of our machine learning approaches), we should be very
careful not to remove the outliers caused by the variability in the measured quantity
itself. Obviously, life will not always be as clear cut, andwe are in need of approaches
that can assist us in the process. One approach is to removemeasurement errors based
on domain knowledge rather than based on machine learning. For example, we know
that a heart rate can never be higher than 220 beats per minute and cannot be below 27
beats per minute (the current world record). So, we remove all values outside of this
range and interpret them as missing values. This will often be the right choice, but
there are situations in which outliers by their existence carry information, e.g. a heart
rate above 220 bpm is not possible but might reflect a situation of extreme physical
stress causing the chest strap not to work properly. Hence, there is the possibility that
we filter out important information.

An additional problemwemight encounter is that domain knowledge is notwidely
accessible or to a large extent it is unknown how to define outlier for a domain. What
can we do, if we do not possess this type of domain knowledge and have no up-front
knowledge on what an outlier is? Below, we will treat various approaches that can
help us to remove outliers. We will assume we do not have any knowledge on what
outliers are. Hence, we consider it being an unsupervised problem. Be aware that
this process is dangerous as there is a high risk of removing points that are not
measurements errors and might in fact be the most interesting points in our dataset.
One thing we can do is perform visual inspection to make sure we do not remove any

28 3 Handling Noise and Missing Values in Sensory Data

valuable information. Alternatively, we can also just try whether we improve on our
machine learning tasks when we remove them.We roughly follow the categorization
of [59] for outlier detection algorithms, discussing distribution-based models first,
followed by distance-based approaches.

3.1.1 Distribution-Based Models

The first approach we will consider for outlier removal is based on the probability
distribution of the data. Here, the data should follow a certain known distribution
and we remove those that are outside of certain bounds of the distribution. These
approaches are mainly targeted at single attributes X j .

3.1.1.1 Chauvenets Criterion

When we consider Chauvenets criterion (cf. [35]), we assume the data to follow
the normal distribution. Given that we have N measurements for attribute X j , we
compute the mean μ and standard deviation σ of our data:

μ =
∑N

n=1 x
j
n

N
(3.1)

σ =
√

∑N
n=1(x

j
n − μ)2

N
(3.2)

Together, these values define a normal distribution N(μ, σ 2). According to Chau-
venet’s criterion we reject a measurement from a dataset of size N when its proba-
bility of observation is less than 1

2N . A generalization of this criterion is to replace
the value 2 with a parameter c, we will follow this generalization in the remainder
of this explanation. We can compute the probability of observing a value of at most
x j
i as follows:

P(X ≤ x j
i) =

x j
i∫

−∞

1√
2σ 2π

e− (u−μ)2

2σ2 δu (3.3)

A point is considered an outlier when one of the following two cases holds:

3.1 Detecting Outliers 29

Fig. 3.1 Outlier detection
based on Chauvenet’s
criterion

(1 − P(X ≤ x j
i)) <

1

cN
(3.4)

P(X ≤ x j
i) <

1

cN
(3.5)

where c is a positive constant number roughly between 1 and 10 that specifies the
degree of certainty for the identification of outliers given the assumption of a normal
distribution. A higher c corresponds to higher chance that identified outliers are truly
outliers. Graphically, the outliers are visualized in Fig. 3.1. The red areas reflect a low
probability (less than 1

cN) of observing measurements that are not outliers—in other
words we assumemeasurements in this area to be outliers (remember, we do not have
ground truth here, although we do assume the normal distribution). Alternatives to
Chauvenet’s criterion exist that are based on the same assumptions yet a bit more
sophisticated, see e.g. [52].

3.1.1.2 Mixture Models

While the previous approach is straightforward, it does assume that a single distri-
bution can be fitted to our measurements. This might not always be realistic. If we
think of accelerometer data, our data could for example follow a combination of two
normal distributions one bump for measurements in case of a user being inactive
and one for the same user being active. We can solve this problem with mixture
models. Assuming we have K distributions to describe our data, e.g. K normal dis-
tributions {N(μ1, σ1), . . . ,N(μK , σK)}, we would then like to find the values of the
parameters for those individual distributions (i.e. μ1 . . . μk, σ1, . . . , σK) that when
combined best describe the data. We formulate the probability of observing a value
x j
n for a specific measurement:

30 3 Handling Noise and Missing Values in Sensory Data

p(x j
n) =

K∑

k=1

πkN(x j
n |μk, σk) (3.6)

With

K∑

k=1

πk = 1 (3.7)

∀k : 0 < πk ≤ 1 (3.8)

Here, πk expresses the weight of each distribution. The sum of the weights is scaled
to 1 to make sure the total area under the curve remains 1. We need to find the
parameters that maximize the probability of observing the data we have measured,
specified by means of the likelihood:

L =
N∏

n=1

p(x j
n) (3.9)

In other words, we maximize the product of the probabilities of observing our
attribute values; the higher the probabilities of the individual attribute values the
higher the product. One way to do so is the Expectation-Maximization algorithm
(cf. [18]) which you can explore in the exercises. Once we have found the best
parameters, we can consider identifying outliers again by considering the probability
of each observation. Points with the lowest probabilities are candidates for removal.
The exact criterion to apply here depends on the data at hand. In order to find the best
number of distributions to fit the data, multiple approaches have been developed, see
[61] for an overview.

3.1.2 Distance-Based Models

A second type of algorithm to detect outliers is to consider the distance between
a point and the other points in the dataset. We will treat distance metrics between
points inmore detail in Chap.5. For now assume that we have ametric to compute the
distance between two instances xi and x j called d(xi , x j). This is different from the
distribution-based approach which only focused on individual attributes. Of course,
one can also consider individual attributes for the distance-based approaches (just
consider p = 1).

http://dx.doi.org/10.1007/978-3-319-66308-1_5

3.1 Detecting Outliers 31

3.1.2.1 Simple Distance-Based Approach

The first approach takes a global view towards the data: we consider the distance of
a point to all other points. We define a certain minimum distance dmin within which
we consider a point to be close to another point. We say that a point is an outlier
when more than a fraction fmin of the points in the dataset is at a distance of more
than dmin (cf. [72]) from that point. Formally:

outlier(xi) =
{
1

∑N
n=1 d_over(xi ,xn ,dmin)

N > fmin

0 otherwise
(3.10)

where

d_over(x, y, dmin) =
{
1 d(x, y) > dmin

0 otherwise
(3.11)

Again, the parameter settings for fmin and dmin are crucial for this approach in order
to work well. An example is shown in Fig. 3.2, where we have two relevant attributes,
X1 and X2 representing the x- and y-axis of the accelerometer data of Arnold. The
red dots represent data points where the x-axis and y-axis stand for their values of
X1 and X2 respectively. Assuming we want to determine whether the black dot is
an outlier, we compute for each point whether it occurs within distance dmin . This
distance from our point is indicated by the circle, assuming a certain distance metric.

Fig. 3.2 Outliers based on
distance

32 3 Handling Noise and Missing Values in Sensory Data

We see that fifteen other points lie within this distance while all other are outside.
Depending on our parameter settings we could consider this an outlier or not.

3.1.2.2 Local Outlier Factor

Instead of taking a global look at points the local outlier factor approach (cf. [30])
only takes points into account that surround it. Some areas in our data space might
be quite dense while others are not. Taking this into account might improve our
detection of outliers. In addition, the approach specifies a degree of outlierness (i.e.
the likelihood of an instance being an outlier). This was missing in the previous
distance based approach, although it would not be difficult to change the previous
approach slightly to account for this. Imagine the scenario shown in Fig. 3.3. We see
data points on the lower left that form a sort of cluster, let us call this cluster 1. On the
upper right we see a similar, yet less dense cluster, which we call cluster 2. Consider
the two points visualized by black dots, point 1 being the lower left point, point 2 the
one in the upper right. Given the shape of cluster 1, point 1 is likely to be considered
an outlier while point 2 is probably not, given the shape of cluster 2. Hence, even
though the distances to the points in the cluster are similar we treat them differently.

Let us dive into the approach in a bit more detail. The first step taken is to define
the k-distance kdist of a point xi . This is defined as the largest distance among the
distances of the k closest points. To describe this, we define the following constraints
for kdist (xi) of a point xi :

Fig. 3.3 Example outliers
for local outlier factor

3.1 Detecting Outliers 33

|{x |x ∈ {x1, . . . , xi−1, xi+1, . . . , xN } ∧ d(x, xi) ≤ kdist (xi)}| ≥ k (3.12)

|{x |x ∈ {x1, . . . , xi−1, xi+1, . . . , xN } ∧ d(x, xi) < kdist (xi)}| ≤ (k − 1) (3.13)

In other words, there should be k−1 points or less with a distance less than kdist and
at least one point with the same distance. The set of neighbors within this distance
is called kdist_nh :

kdist_nh(xi) = {x |x ∈ {x1, . . . , xi−1, xi+1, . . . , xN } ∧ d(x, xi) ≤ kdist (xi)} (3.14)

We define the reachability distance of a point xi to another point x as:

kreach_dist (xi , x) = max(kdist (x), d(x, xi)) (3.15)

This expresses that a reachability distance is the real distance if the point xi is not
among the k nearest points of x (in that case the value for d(x, xi) will be larger
than kdist (x)) and otherwise it is kdist of that point, so we set the distance value of all
points within kdist (x) equal to kdist (x). Next, consider the local reachability density
around our point xi :

klrd(xi) = 1/

(∑
x∈kdist_nh(xi) kreach_dist (xi , x)

|kdist_nh(xi)|

)

(3.16)

In our definition, we look at the neighbors x of xi within kdist , their reachability
distance to xi , and divide this by the number of neighbors. Intuitively this says
something on how close point xi is to its neighbors. We divide 1 by this number, so
the lower the average distance to ones neighbors, the higher the value. In order to
see how much of an outlier the point is compared to its neighbors, we consider the
local reachability density of those neighbors and compare them:

klof (xi) =
∑

x∈kdist_nh(xi)
klrd (x)
klrd (xi)

|kdist_nh(xi)| (3.17)

We compare the values for our point xi and our neighboring points. Remember that a
high value for klrd represents a closer proximity to neighbors. This formula expresses
that the higher the scores for xi on the klrd compared to its neighbors, the lower the
local outlier factor will become, which makes perfect sense.

34 3 Handling Noise and Missing Values in Sensory Data

3.2 Imputation of Missing Values

Obviously, our dataset could contain a lot ofmissing values. This could be caused by a
lot of outliers which were removed, or possibly by sensors not providing information
at certain points in time. There are different ways to replace these missing values,
we refer to this process as imputation.

The first approach we can take is to impute the mean value of an attribute calcu-
lated over the instances where the value is known. This is a common approach. The
approach does have disadvantages when we have data with a lot of extreme values,
as this severely impacts the value of the mean. The median is a robust alternative for
these cases as it is less sensitive to extreme values. Note that all these approaches
target numerical values. For categorical values, we can use the mode.

A more sophisticated approach is to predict the missing value for attribute j of
instance i (x j

i) using statistical models such as linear regression. In general, there are
two ways this can be done:

1. we consider the values for the other attributes of the same instance and predict
x j
i using those values (i.e. x1i , . . . , x

j−1
i , x j+1

i , . . . , x p
i → x j

i);
2. we take the previous (and possibly next) values of the same attribute. For the

latter we need a temporal dataset (XT). Hence, we predict in the following way:
x j
1 , . . . , x

j
i−1, x

j
i+1, . . . , x

j
N → x j

i .

We do not need to use the entire set of attributes (first case) or instances (second
case) but can also consider a subset. A simple example of the second approach is
to take the previous and next value of the specific attribute and average the values
(again assuming numerical values), i.e.

x j
i = x j

i−1 + x j
i+1

2
(3.18)

Or in case we know that measurement x j
i−k is the last available measurement while

x j
i+l is the first next measurement we can compute it in the following way (assuming
a fixed sampling rate of our data):

x j
i = x j

i−k + k · x
j
i+l − x j

i−k

(k + l)
(3.19)

This is a simple form of linear interpolation and works under the assumption that
x j
i follows a linear trend. Of course, this does not work for the first and last time
points. In these cases we can either use the next (or previous) couple of time point
and extrapolate the trend from those points. The method described above belongs
to the set of parametric imputation methods that rely on making assumptions on the
distributions of the data as well as the underlying regression relationships. Instead,
it is also possible to use non-parametric approaches to imputation. We can think of

3.2 Imputation of Missing Values 35

these methods as fitting locally-weighted regressions to the data. That is why these
approaches are also called local imputation schemes [3].

Some approaches allow for the usage of values of multiple attributes over time.
An example of this is the Kalman filter which we will discuss in the next section.

3.3 A Combined Approach: The Kalman Filter

An approach that identifies outliers and also replaces these with new values is the
Kalman filter (cf. [66]). The Kalman filter provides a model for the expected values
based on historical data and estimates how noisy a newmeasurement is by comparing
the observed values with the predicted values. Imagine Arnold running through his
favorite park in Amsterdam, the Vondelpark. We continuously obtain GPS signals on
hiswhereabouts. Suddenlywe see a strangemeasurement:Arnold is supposed to have
moved one kilometer in 10 seconds. While we should obviously never underestimate
Arnold’s physical shape we also know he is neither superman nor a Ferrari. The
Kalman filter can find this strange anomaly and will insert a more reliable value
instead. This can also work really well in a real time setting. Again, we need a
dataset with temporal ordering for this to work.

Let us dive into themethod in a bit more detail. In theKalman filter, we distinguish
between a latent state st and the measurements that can be performed based on the
state, in our case xt , or x

j
t if wewant to consider singlemeasurements. In our example

case, the state of Arnold would be the actual presence at a certain location, his actual
physical state, etcetera. Our measurement would be the GPS coordinate, activity
level, heart rate and so on. We can express the next value of a state as:

st = Ftst−1 + Btut + wt (3.20)

Here, Ft and Bt are matrices while st is a vector that represents the previous value
of the state, ut is the control input to the state (we might want to adjust the state, e.g.
by sending a message to Arnold, we will return to this in Chap.9), and wt represents
process white noise. Ft expresses how the previous state influences the new state (by
means of weights associated for each component of the state) while Bt represents
how the control input influences the different components of the next state.

The value for the measurement associated with the state is:

xt = Htst + vt (3.21)

http://dx.doi.org/10.1007/978-3-319-66308-1_9

36 3 Handling Noise and Missing Values in Sensory Data

Ht is again a matrix while vt is the measurement white noise. The noise values
are assumed to be taken from a multivariate normal distribution with covariance
matrix Qt (representing the process noise covariance) and Rt (the measurement
noise covariance) respectively:

wt = N(0, Qt) (3.22)

vt = N(0, Rt) (3.23)

Given this model, we can start to make predictions of the next state. Let ŝt |t−1 rep-
resent the estimation of the state value st given observations up to t − 1 (i.e. an a
priori estimate) and ŝt |t the a posteriori estimate given all observations including the
observation at time t .

Remember that the noise plays an important role, since it determines the uncer-
tainty we encounter when estimating the state. We assume that we have a matrix
containing the level of noise or error we expect to see, denoted as Pt . The matrix
contains the covariance and variances of the Gaussian probability density functions
that characterize the error in our predictions. Pt |t−1 represents our a priori estima-
tion of the error while Pt |t is our a posteriori estimation. We start by making our
predictions:

ŝt |t−1 = Ft ŝt−1|t−1 + Btut (3.24)

Pt |t−1 = E[(st − ŝt |t−1)(st − ŝt |t−1)
T] (3.25)

Equation3.24 is easy to understand given the previous Eq.3.20 for the next value of
the state. Equation3.25 updates our estimation on the error based on our estimation
of the state. Note that we cannot directly compute Pt |t−1 this way as we do not know
st , but you can derive the value of Pt |t−1 in a different way. It is beyond the scope of
this book to go into detail on this. The equation above does provide some intuition
on the meaning of Pt |t−1.

The next step is to update our model based on our a priori predictions and the
actual observations we perform. Here our matrix Ht plays an important role, recall
that this is the mapping from a state to measurements associated with that state. First,
we can determine the difference between a measurement xt and our a priori estimate
for the measurement, we will refer to this as et :

et = xt − HT ŝt |t−1 (3.26)

And we can create an estimation for the covariance for our measurements St given
our matrix Ht :

St = Ht Pt−1|t−1H
T
t + Rt (3.27)

3.3 A Combined Approach: The Kalman Filter 37

In order to make the best estimate of the state given the error we observe between the
actual and expected measurements we can define the optimal Kalman gain, defined
as:

Kt = Pt |t−1H
T
t S−1

t (3.28)

And we use this to define the a posteriori estimation of the state based on our a priori
estimate and the error between our model and the actual measurements:

ŝt |t = ŝt |t−1 + Ktet (3.29)

Finally, we update our covariance matrix:

Pt |t = (I − Kt Ht)Pt |t−1 (3.30)

The sequence of equations might be a bit overwhelming, but we hope that the
intuition behind the approach has become clear: Basically, we distinguish between
a state, that is not directly observed, and a measurement. Kalman filtering is then
a set of transition equations that uses measurements to describe how the state is
evolving. There are ample books and tutorials that discuss Kalman filtering in more
detail [130].

We can use the Kalman filter by letting it run over our data, and then analyze when
the deviation (i.e. et) is too big. In case it is (apparently it is noise), we can use our
estimate and otherwise we use the original value. Of course, we keep on updating
our model independent of whether we accept a measurement or not since this allows
us to better estimate the noise levels.

Next to using the Kalman filter to detect and impute outliers, it can also be used
for sensor fusion to extract information from a combination of sensors. Think again
of our friend Arnold we could fuse data from various sensors (e.g. GPS location,
accelerometer, step counter, speed) to determine his exact location, being our latent
state. See [111] for an example of how to use the Kalman filter for sensor fusion.

3.4 Transformation

The next approaches for handling noisy data is to transform our data in a way that
subtle noise (not the huge outliers we have seen before) is filtered and the parts
of our data that explain most of the variance are identified. We will explain two
approaches: the lowpass filter (which can be applied to individual attributes) and
Principal Component Analysis, which works across the entire dataset.

38 3 Handling Noise and Missing Values in Sensory Data

3.4.1 Lowpass Filter

The lowpass filter can be applied to data that is of temporal nature (i.e. XT), and
assumes that there is a form of periodicity. Think about accelerometer data for ex-
ample, if we are walking, we will see periodic measurements in our accelerometer
data at a frequency around 1Hz as walking is a repetitive pattern. When we process
our data, we can filter out such periodic constituents based upon their frequency.
We could say for instance that any measurement we perform that is at a higher fre-
quency than our walking behavior is irrelevant and can be considered as noise (they
might actually hamper our machine learning process). Hence, we want to remove the
data originating from a form of periodicity above a certain frequency, and leave the
data at lower frequencies untouched. How we move from measurement values over
time to frequencies is explained in more detail in Chap. 4 when we discuss Fourier
Transformations. An example for cutting out parts of the frequency spectrum and
the corresponding periodic behavior is the Butterworth filter. Assuming fc to be the
cutoff frequency we represent the transfer function G (usually specified in dB due
to the traditional application in the audio domain) of the signal with frequency f by
the following (simplified) equation:

|G(f)|2 = 1

1 + (f/ fc)2n
(3.31)

We see that the higher the frequency f , the lower the magnitude of the transfer
function G, which is exactly what we want: we want to filter out the high frequency
data and let the low frequency data pass. The parameter n is the order of the filter.
The higher the order, the more steeply the magnitude of the frequencies above the
cutoff frequency fc drop. Let us consider an application of the filter to exemplify its
working.

Figure3.4 shows an example that combines two sinusoid functions with different
frequencies, one with a frequency of 1Hz and one with a much lower frequency,
namely 0.1 Hz. We apply a Butterworth filter with a cutoff frequency of 0.5 Hz (i.e.
everything with a higher frequency is filtered) to the combined data and see that we
obtain the single low frequency sinusoid: we have filtered out the high frequency
data. Lowpass filters have for instance been used in [7, 32, 36, 128] to clean up the
data.

3.4.2 Principal Component Analysis

The Butterworth filter addresses individual attributes, transforms the signal into the
frequency domain, and then picks a specific part of the frequency spectrum (e.g.
low frequencies). We can also consider a set of attributes at the same time and
extract features that explain most of the variation observed over all attributes. To

http://dx.doi.org/10.1007/978-3-319-66308-1_4

3.4 Transformation 39

Fig. 3.4 Example application of Butterworth filter

Fig. 3.5 Example dataset
for principal component
analysis

understand this, let us consider Fig. 3.5, in which we have two attributes X1 and
X2. The measurements might represent the accelerometer data of Arnold and are
expressed by the red points. We see that an increase in the measurement value for
X1 (acceleration on the x-axis) goes hand in hand with an increasing value for X2

(acceleration on the y-axis).
How can we explain the variance in the data?We can actually see that the solid red

line describes our data in a reasonably precise way. If we would know the equation

40 3 Handling Noise and Missing Values in Sensory Data

of this line, and we would project all points onto that line (so we ignore the distance
to the line) we would be able to express our data points by a single value Xnew on
the line instead of value pairs. In fact, the distance from the line could be noise,
which we could get rid of in one go as well. The other line (the blue line) is a line
perpendicular (at an angle of 90o) to our previously found line. It can be used as a
secondary axis to express the distance of a point from our previous line. If we use
both, we obviously do not lose any information, and hence, we might not get rid of
the noise. Here, we only exemplify this procedure for two attributes, however, it is
applicable to an arbitrary number of attributes.

The main goal of Principal Component Analysis (PCA) (see e.g. [64]) is to find
vectors that represent these lines (or hyperplanes if we havemore than two attributes)
and order them in terms of how much variance in the data is explained. There are
different ways to find these vectors. We will explain one. We start by defining the
co-variance matrix of our data. The covariance between an attribute Xi and X j is
defined as follows:

cov(Xi , X j) =
∑N

n=1(x
i
n − X̄i)(x

j
n − X̄ j)

N
(3.32)

where X̄k is the mean value for attribute Xk :

X̄k =
∑N

n=1 x
k
n

N
(3.33)

The covariance matrix is then defined in the following way:

C =
⎛

⎜
⎝

cov(X1, X1) · · · cov(X1, X p)
...

. . .
...

cov(X p, X1) · · · cov(X p, X p)

⎞

⎟
⎠ (3.34)

The covariance matrix expresses how the values of our attributes relate to each other,
i.e. to what extent values are are correlated. The covariance of the same attribute
(i.e. cov(Xi , Xi)) is the variance of the attribute. If we divide each element of the
covariance matrix by the product of the per attribute standard deviations, i.e. σiσ j ,
we obtain the matrix of all correlation coefficients. If an element of this matrix is
1, values of both attributes across our instances deviate from the mean in the same
way (i.e. if we have a low value of one attribute compared to the mean, the same
holds for the other attribute). In case of a correlation of -1 they behave in precisely
the opposite way. Note that our matrix is symmetric (cov(Xi , X j) = cov(X j , Xi)).

How does this help us to find our line in Fig. 3.5 to describe the data? Well, once
we have obtained thismatrixwe can find its eigenvectors. These are vectors that when

3.4 Transformation 41

they are multiplied with our covariance matrix, we end up with (a multiplication of)
our original vector, i.e.

⎛

⎜
⎝

cov(X1, X1) · · · cov(X1, X p)
...

. . .
...

cov(X p, X1) · · · cov(X p, X p)

⎞

⎟
⎠ ·

⎛

⎜
⎝

v1
...

vp

⎞

⎟
⎠ = f ·

⎛

⎜
⎝

v1
...

vp

⎞

⎟
⎠ (3.35)

Here, the factor of the multiplication f is the eigenvalue of the eigenvector. To avoid
counting multiplications of our eigenvectors twice we only consider the normalized
eigenvectors:

⎛

⎜
⎝

sv1
...

svp

⎞

⎟
⎠ =

⎛

⎜
⎝

v1
...

vp

⎞

⎟
⎠ ÷

√
v2
1 + · · · + v2

p (3.36)

Typically, each covariance matrix of dimensions p × p (remember that we have p
attributes) has exactly p normalized eigenvectors. These eigenvectors are perpendic-
ular. To find these eigenvectors ample approaches are available which we will not
discuss here. These eigenvectors in fact are precisely the lines we have considered in
our problem setting before. The normalized eigenvector with the highest eigenvalue
is the line (or hyperplane for p > 2 attributes) that explains most variance in the
data. This is called the principal component (hence the name of the approach).

Let {svi
1, . . . , sv

i
p} represent the values of the eigenvector with the ith highest

eigenvalue fi . We can project our data to these new axes (just as we have explained
for the example). If we select n ≤ p eigenvectors we obtain a new (projected) dataset
as follows:

⎛

⎜
⎝

x11 · · · x p
1

...
. . .

...

x1N · · · x p
N

⎞

⎟
⎠ ·

⎛

⎜
⎝

sv1
1 · · · svn

1
...

. . .
...

sv1
p · · · svn

p

⎞

⎟
⎠ =

⎛

⎜
⎝

X
1
1 · · · Xn

1
...

. . .
...

X
1
N · · · Xn

N

⎞

⎟
⎠ (3.37)

In the matrix on the right hand side of Eq. 3.37, each row still represents an instance
of our original dataset. However, we have reduced it to n attributes instead of p.

If we take n < p, we do lose some information. Given our ordering however, the
last eigenvectors are not likely to explain a lot of variance. Typically, the first number
of components (i.e. those with the highest eigenvalues) explain most of it. In the case
study we will see a typical example and illustrate that there is often a clear cut-off
point.

Let us return to the previous example from Fig. 3.5. We have already visualized
the principal component (solid red line) and the second component (dashed blue
line). The principal component is specified as < sv1

1, sv
1
2 >=< 0.7044, 0.7089 >

with f1 = 22.13 and < sv2
1, sv

2
2 >=< −0.7089, 0.7044 > with f2 = 0.0392.

We can see that the eigenvalue of the first vector is much higher. This makes a

42 3 Handling Noise and Missing Values in Sensory Data

Fig. 3.6 Our example data after application of the first principal component

Fig. 3.7 Our example data
after application of the first
two (i.e. all) principal
components

lot of sense, as it explains nearly all variance while the second one does not sig-
nificantly contribute. If we apply only the first component and transform the data,
we obtain the new dataset visualized in Fig. 3.6. Hence, we only have a single di-
mension representing the positioning of a data point on the line spanned by the
first principal component. Figure3.7 visualizes the new dataset when we use both
components. Here, only the values have changed due to the two new axes. We see
PCA being applied in various research papers related to the quantified self, including
[16, 19].

Great, we are now able to extract useful features from our data using PCA. The
big disadvantage is that we often lose the ability to interpret our models as we now
have a new space with new values that are not immediately interpretable by a domain
expert. In low dimensional cases it can be helpful to look for correlations between
original attributes and the principal components to support interpretation.

3.5 Case Study

Let us consider the crowdsignals dataset again. We will now iteratively try the dif-
ferent approaches we have presented in this section and select the most appropriate
ones to process our dataset. We will pass the various approaches in the same order
they were explained before. First, we will show how to apply outlier detection in this
dataset and filter extreme values. Then, we will impute missing values. Next, we will

3.5 Case Study 43

look at Kalman filtering as an integrated alternative approach to the previous steps.
Finally, we end with the application of lowpass filtering and principal component
analysis.

3.5.1 Outlier Detection

We have seen various outlier detection algorithms, but which one is best for our
current dataset? To determine this, we will explore two representative types of mea-
surements, namely the acc_phone_x which varies widely (similar to the other ac-
celerometer measurements, magnetometers and gyroscope), and light_phone_lux
which seems to be pretty stable except for a few extreme values (similar to heart
rate and pressure). First, we try to explore the parameter setting of the different
algorithms that result in reasonable detection of outliers. We do this by visual in-
spection and by seeing whether points we would visually consider to be outliers
are indeed flagged without flagging points that seem normal. Figure3.8 shows our
four outlier approaches applied to acc_phone_x while Fig. 3.9 shows the same for
light_phone_lux. These are the type of figures we use for our visual inspection. Note
that we consider attributes in isolation here while our distance-based approaches
would allow us to look at combinations of attributes. We have made this choice be-
cause we want to compare all approaches, and we still obtain good results in terms
of finding outliers. To generate Figs. 3.8 and 3.9 we used the following parameter
settings:

• Chauvenet’s criterion: we set the value c = 2, according to the traditional Chau-
venet criterion.

• Mixture models: we use 3 mixture components and a single iteration of the algo-
rithm

• Simple distance-based approach: we set dmin = 0.1 and fmin = 0.99 and use
Euclidean distance.

• Local outlier factor: we use 5 for the value of k and Euclidean distance.

In Figs. 3.8 and 3.9 we can see that Chauvenet’s criterion does signal outliers for
the light_phone_lux attribute: we find 33 outliers that seem to make sense. For the
acc_phone_x we do not find any outliers, and visual inspection indeed shows that
there are not very clear outliers. Note that we did not explicitly check whether the
distribution of the values follow the normal distribution in this case, but the visual in-
spection does show that the outliers found are appropriate. You can explore this issue
more in the exercises. The mixture models seems to work fine for light_phone_lux
as well: extreme and rare values get a probability of observing of around 0. For
acc_phone_x we again do not see very clear outliers; this is a sign that very obvious
outliers are indeedmissing. Our simple distance-based outlier detection finds outliers
for the two examples: we see some outliers for both cases (27 for light_phone_lux
and 11 for acc_phone_x). Finally, the local outlier factor does show changes in values

44 3 Handling Noise and Missing Values in Sensory Data

(a) Chauvenet’s criterion (b) Mixture model (upper part shows the observed
values, bottom part shows the probability of ob-
serving the data)

(c) Simple distance-based approach (d) Local outlier factor (upper part shows the ob-
served values, bottom part shows the k-lof score)

Fig. 3.8 Outlier for the attribute acc_phone_x

for outliers, but is in our opinion less clear compared to the simpler distance-based
approach. In addition, it is computationally more demanding. Based on our obser-
vations, we have decided to apply a filtering of the outliers (replacing them with an
unknown value) using the Chauvenet criterion: we want to be on the safe side and
not throw away data points for which it is not so obvious that they are outliers. We
apply this to all attributes except for the labels (that are just binary and do not contain
outliers). Using a single parameter across all attributes has a severe risk which we
are completely aware of, but visual inspection showed that the outliers that were
removed seemed fairly reasonable.

3.5 Case Study 45

(a) Chauvenet’s criterion (b) Mixture model (upper part shows the observed
values, bottom part shows the probability of ob-
serving the data)

(c) Simple distance-based approach (d) Local outlier factor (upper part shows the ob-
served values, bottom part shows the k-lof score)

Fig. 3.9 Outlier for the attribute light_phone_lux

3.5.2 Missing Value Imputation

Now that we have removed the extreme values, we are left with a number of missing
values. One option is removing the instances that contain missing values. However,
this would result in a loss of valuable data. Therefore, we consider imputation of
the missing values. We have seen that the heart rate attribute contains most missing
values, so let us use the heart rate as an example. Figure3.10 shows the result of
imputation by using the mean and interpolation. Clearly, for this type of time series,
interpolation techniques are preferred for imputation: it results in much more natural
values. This holds for temporal sequences in general, but if we do not have this
temporal ordering it is impossible. We apply this to all attributes with missing values
(except the label attributes).

46 3 Handling Noise and Missing Values in Sensory Data

Fig. 3.10 Missing value imputation for hr_watch_rate. The top panel shows the original data
followed by imputation using the mean, and interpolation respectively

3.5.3 Kalman Filter

As an alternative to our two step approach (identifying outliers and imputing missing
values) we can also apply the Kalman filter to perform both tasks simultaneously.
However, we do not have a known model that relates our observations to true values.
Therefore, we are required to use a very simple model which directly links observa-
tions to real values per attribute. Other parameters of the Kalman filter (e.g. Qt , Rt)
can be automatically tuned towards the dataset. Despite its simplicity, this approach
is able to capture whether a measured value deviates from the expectations and can
replace it with the expected value based on the past values. In case of an unknown
value it can impute its predicted value.

Figure3.11 shows an example for the attribute acc_phone_x. We see that the
application of the filter results in the values being dampened. While this can be
useful in some cases, we will not further pursue this avenue for this dataset but stick
to our outlier detection with the simple distance based approach and imputation by
interpolation. In case a model would be known that relates (multiple) measurements
to true values (or states) the filter could certainly be very useful. Also in an online
setting (where data comes in on the fly) wherewemight not have access to a complete
dataset, or do not have sufficient time to run our outlier detection algorithms, Kalman
filtering could be useful.

3.5 Case Study 47

Fig. 3.11 Kalman filter applied to acc_phone_x, the top graph shows the original values, the bottom
the values after applying the Kalman filter (note the differences in scales)

3.5.4 Data Transformation

The Butterworth lowpass filter allows us to remove some of the high frequency noise
we potentially have in our dataset that might disturb our learning process. We would
only expect this for the accelerometers, magnetometers, and the gyroscope. Let us
focus on one accelerometer measurement, namely acc_phone_x. Given that we know
that walking behavior has a frequency between 1 and 1.5 Hz, we look at the influence
of filtering data with a frequency above 1.5 Hz. We use an order of 20 in order to
guarantee that most of this noise is removed. Figure3.12 shows the result. We indeed
see that the data we obtain after filtering seems much cleaner (and easier to learn
from) so we will use the filtered data in the remainder of the book.

Finally, we can try to find the principal components that explain most of the vari-
ance in our measurements (note that we consider all measurements/attributes here).
If we include the value with respect to those components instead of the raw mea-
surements, it might enable us to achieve better predictive capabilities. Of course,
we should only use our predictors and not include our eventual targets. We apply
principal component analysis to all our attributes except for the labels (target for clas-
sification) and heart rate (target for regression). You can see that we simplify things
a bit as we could have also created separate sets for the regression and classification
problems, but we do not feel that would add anything given that most of the variance
is in the other attributes.

48 3 Handling Noise and Missing Values in Sensory Data

Fig. 3.12 Original data (top) and filtered data for acc_phone_x with frequencies above 1.5Hz
filtered. Note the time scale, we zoomed into part of the data

Fig. 3.13 Explained
variance by principal
components ranked on
importance

Figure3.13 shows the explained variance by the different principal components.
We clearly observe that the explained variance declines after 7 components (this is
sometimes referred to as the elbow). We therefore decide to select 7 components and
include the value of each of the components (for each time point) into our dataset.

3.5 Case Study 49

Fig. 3.14 Dataset after Chap.3

Finally, the processed dataset after all steps we have just explained is shown in
Fig. 3.14. Note the change in the scales of some axes due to the removal of the
outliers.

3.6 Exercises

3.6.1 Pen and Paper

1. In our quantified self setting, we might face datasets of different users. In the
description of the techniques in the chapter, we have focused on a single dataset
only. When we apply these approaches, should we apply the techniques (and
make choices) based on individual user datasets, or should we apply them on the

50 3 Handling Noise and Missing Values in Sensory Data

combination of all datasets? Provide at least two arguments in favor of each these
two options.

2. We have seen two types of outlier detection algorithms: distance and distribution
based. In what situations would it be better to apply a distance based outlier
detection algorithm over a distribution-based approach?

3. In the simple distance-based approach we have seen two parameters, namely fmin

and dmin . Explain the way in which you would find appropriate values for these
parameters.

4. The local outlier factor algorithm is quite complex. Find out what the computa-
tional complexity of the algorithm is and discuss ways to improve the scalability
of the approach.

5. We have seen that the Kalman filter assumes a model that relates observations
to states. Imagine that we do not have such a model, but that we just map the
observations and states one-by-one in a direct way (in fact we have done this
for the crowdsignals case). Explain what the Kalman filter will entail when we
take such an approach, so how does it update its model and what values would it
predict?

3.6.2 Coding

1. One of the criteria to allow for applying Chauvenet’s criterion is that the data
follows a normal distribution. We did not actually verify this in our application of
the filter. Study for at least two sequences of sensory values in the crowdsignals
data (including the acc_phone_x we used in our case study) whether they are
indeed normally distributed.

2. To generate Figs. 3.8 and 3.9 we have used the parameter settings described in
Sect. 3.5.1. Vary the constant c (smaller and larger values) of the Chauvenet’s
criterion and study the dependency of the number of detected outliers on c.
Repeat this for the other three methods presented for outlier detection. Use the
source code from book’s website, that generated the figures, as a starting point
for the analysis.

3. Use a model-based approach to impute the heart rate
4. Similarly towhatwe have done for our crowdsignals dataset, apply the techniques

that have been discussed in this chapter to the dataset you have collected yourself.
Write down your observations and argue for certain choices you have made.

5. In line with the previous question, do the same for the case you found covering
the data of multiple people. Think about the answer you gave to one of the pen
and paper questions: how should you tackle the issue with multiple datasets?

http://dx.doi.org/10.1007/978-3-319-66308-1_3

Chapter 4
Feature Engineering Based on Sensory Data

After having applied the techniques explained in Chap.3 a cleaned dataset results.
While this is a great start, we are not completely ready to apply machine learning
algorithms. Especially when we consider the very nature of our problem, we might
face data on very different levels. For example, we have accelerometer data but
also some Facebook posts. How do we combine this information? We might need to
extract some useful features fromour dataset tomaximize our predictive performance
in the end. Of course, we could focus on very specific features (e.g. how can we
extract a heart rate from a raw ECG signal), but we are much more interested in
generic approaches, that can be applied in various contexts. We will mainly consider
features that use the notion of time, both in the time domain and the frequency domain
(cf. [78]). In addition, we will discuss features for unstructured data and review the
usage of natural language data as this plays a central role in a lot of applications.

4.1 Time Domain

Temporal Features in the time domain are extensively used in research focusing on
the quantified self [21, 74, 88, 93, 98, 129]. So what is meant by temporal features?
Let us start with an example. Imagine that we have a training set in the form of a time
seriesXT as shown in Table4.1. Suppose our target is to perform supervised learning
and more precisely to predict whether the person that generates this data (and we all
know who we are talking about) is tired or not. If you look closely at the dataset you
will see that it will be quite difficult to make this prediction only based on the data at
that specific time point. For example, just looking at heart rate or activity is not going
to cut it: for instances containing a high heart rate (120) we sometimes observe the
target Tired = yes and sometimes Tired = no. The same holds for the activity level,
speed, and activity type. If we consider a history of some time points however, we

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_4

51

http://dx.doi.org/10.1007/978-3-319-66308-1_3

52 4 Feature Engineering Based on Sensory Data

Table 4.1 Example dataset for temporal aggregation

Time point Heart rate Activity level Speed Activity type Tired

0 45 Low 0 Inactive No

1 120 High 10 Running No

2 45 Low 0 Inactive No

3 120 High 10 Running No

4 120 High 9 Running Yes

5 80 Medium 5 Walking Yes

6 45 Low 0 Inactive No

7 80 Medium 5 Walking No

may find informative clues that help us to predict the target: two consecutive heart
rates of 80 or above could be a good predictor for our target. Since the vast majority
of popular machine learning algorithms will not be able to take advantage of this
information as they just consider instances in isolation (note that we will explain
learning algorithms that can exploit the temporal dimension in Chap. 8), we need to
generate features that encode this temporal information. Engineering features in the
time domain is often referred to as the field of temporal data mining (see e.g. [86]).
We will discuss approaches for numerical, categorical as well as mixed data.

4.1.1 Numerical Data

Let us consider an attributewith numerical values first. Let us say the heart rate, which
is the first column in our training data matrix XT . In general, the values observed
over time for attribute Xi can be expressed as xi1, . . . , x

i
N assuming time is discrete

and 1 represents the first and N the last instance.We now define a new attribute X ′
i for

which the values represent a summary of the relevant historically observed values.
Two terms need to be defined more precisely: the relevant historically observed
values, and how we summarize these observed values. The relevance is defined
using a window size λwhich expresses a number of discrete time points (equal to the
number of instances). For the attribute i at time point/instance t, xit , we determine the
new value x_newi

t based on the relevant measurements [xit−λ, . . . , x
i
t]. Note that we

can only compute this for t ≥ λ. Thus the window size expresses the number of prior
instances or time points that are considered. Of course, the value for λ depends on
the data and type of measurement and should be set based on domain knowledge or
rigorous experimentation. In literature on activity recognition, various window sizes
have been reported ranging from instances covering a second of data ([54, 94]),
several seconds [13] to 30s [116]. Gu et al. [54] argue that different windows sizes
can be explored, even separate window sizes per feature. Enough about the history:

http://dx.doi.org/10.1007/978-3-319-66308-1_8

4.1 Time Domain 53

how do we summarize these selected values? There are again many possibilities: one
could consider the mean, median, minimum, maximum, standard deviation, slope,
or any other measurement deemed appropriate. Nice overviews of possibilities that
have been used in the context of human activity recognition are presented in [78]
and [118]. Below, formalizations of commonly used summarization functions are
given:

x_meanit =
∑t

n=t−λ x
i
n

λ + 1
(4.1)

x_maxit = maxt−λ≤n≤tx
i
n (4.2)

x_minit = mint−λ≤n≤tx
i
n (4.3)

x_stdit =
√∑t

n=t−λ(x_mean
i
n − xit)2

λ + 1
(4.4)

Note that using time windows and similar functions to aggregate data should not
be completely new to you: we have used it to consolidate our raw data in Chap.2.
Returning to our running example, let us consider the attribute heart rate with a
window size of λ = 1. We will use the mean value to summarize the history. The
new dataset after adding the attribute is shown in Table4.2. Note that in practicemuch
more data is needed to draw conclusions on the predictive power of new features.

Of course,wehave now just focusedononenumerical attribute.Multiple attributes
can also be combined if desired. As mentioned earlier, setting appropriate window
sizes is an important factor. A way to optimize the window size is proposed in van
Breda et al. [28].

Table 4.2 Example dataset after numerical aggregation

Time point Heart rate Temporal mean heart
rate

Tired

0 45 - No

1 120 82.5 No

2 45 82.5 No

3 120 82.5 No

4 120 120 Yes

5 80 100 Yes

6 45 62.5 No

7 80 62.5 No

http://dx.doi.org/10.1007/978-3-319-66308-1_2

54 4 Feature Engineering Based on Sensory Data

4.1.2 Categorical Data

We are now able to exploit the temporal dimension for numerical data, but what
about categorical data? If we consider our prior example, the activity type might also
be an excellent predictor when considering previous values, e.g. running two times
in a row in the last three time points results in tired = yes. We cannot just capture
this in a numerical value as we could for the numerical data discussed before. First,
we need to identify what combinations are useful. Unfortunately there might be a
lot of options we can potentially consider as a predictor depending on the number
of categories occurring in the attributes. Hence, we need to generate patterns in an
intelligent way and need to be selective about which ones we consider. Below we
will introduce an example of an algorithm loosely based on (and a simplification
of) the algorithm proposed in Batal et al. (cf. [12]) that does precisely what we
seek to achieve. We focus on finding temporal patterns in the values of categorical
attributes that occur sufficiently frequent. We specify temporal relationships inspired
by Allen [6] and focus on values that occur in succession (one before the other, b) or
occur at the same time point, i.e. co-occur c. An example temporal pattern from our
dataset is for instance Activity level = high (c) Activity type = running or Activity
type = inactive (b) Activity type = running. The co-occurrence relationship is most
valuable if we combine it with the before relationship since learning algorithms will
be able to identify the predictive power of the two attributes together, except if we
consider co-occurrence relationships before the current time point.

Let us again consider a fixed window size λ limiting the history we consider. A
notion that will drive our search for these patterns is the support of the patterns in
our data: how often the pattern occurs in the data compared to the number of time
points (or instances) in our dataset. Assume we have found a pattern pa. The support
is defined as follows:

support(pa) =
∑tend

t=tstart+λ occurs(pa, t − λ, t)

N − λ
(4.5)

where

occurs(pa, ts, te) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (1) pa is of the form Xi = v and there exists a time
point between ts and te where v is observed for Xi,
(2) pa is of the form pa1 (c) pa2 and there exists
a time point between ts and te where both pa1 and
pa2 occur, or (3) pa is of the form pa1 (b) pa2 and
there exists a time point t1 before t2 both between
ts and te such that pa1 occurs at t1 and pa2 at t2

0 otherwise

(4.6)

4.1 Time Domain 55

To compute the support, we pass all instances in our data that have enough history,
and check whether the patterns occur in the selected history (limited by window size
λ). A pattern is said to occur within the history if it is a simple pattern (i.e. an attribute
value combination) for which a time point exists in the given historical time interval
where the value is observed. If the pattern is more complex (i.e. contains (c) or (b)
constructs), the occurrence of the sub patterns and, additionally, their specified order
is verified. Note that we did make a simplification as this definition cannot cope with
all nested cases. This is done intentionally to keep the definition simple.

A certain minimal support threshold θ will be the basis to generate patterns. We
simply start to generate all possible patterns of size one first (i.e. attribute value pairs)
and check whether their support meets our threshold θ . We then move into a loop
where we continuously expand the size of the patterns (referred to as k-patterns,
where k represents the patterns size). If we would not do this in an efficient way,
we would still need to consider a lot of potential patterns. The support, however,
comes with a nice property (following the APRIORI algorithm, [5]): we only need
to consider k-patterns that extend our (k − 1)-patterns, and the only way to extend
them is by using the 1-patterns that fulfill our minimum support threshold. This is
because the support of a new pattern can never be greater than the support value of the
least supported subpattern it includes. This substantially limits our search space. The
algorithm is shown in pseudocode below. We refer to the set of generated patterns
as P:

Algorithm 1: Temporal Pattern Identification Algorithm
P = {}
k = 1
Generate patterns of size 1 (attribute values pairs)
Calculate the support for each pattern and add the ones that reach the threshold θ to P
while True do

Select the current set of k-patterns Pk from P
Try to extend each element of Pk with an element from P1 using (c) and (b) constructs
Calculate the support for the new cases
Add the cases to the set P for which the support ≥ θ

k = k + 1
if no cases have been added then

return P
end

end

In the end, the patterns become new attributes (i.e. additions to X) for which the
value expresses the number of occurrences of the patterns in the relevant history of
the instance.

56 4 Feature Engineering Based on Sensory Data

Let us turn to our example to illustrate the whole process. Here, we consider only
the attribute Activity type as an example. We can see that there are three possible
values in our dataset, namely running, walking, and inactive. If we generate 1-
patterns with a window size of λ = 1, we find that pattern Activity type = running
has a support of 5

7 . Note that we ignore the first instance for the calculations when
calculating the support, as there is insufficient history available. For computing the
support we do not consider how often a pattern occurs within the window for an
instance, we just add 1 in case it occurs at least once for an instance and 0 otherwise.
We accordingly derive a support of 5

7 for Activity type = inactive and 3
7 forwalking.

Assuming θ = 2
7 , we add all to our set P. We now move to the 2-patterns and try

all combinations with all constructs with the 1-patterns we have identified. Since we
just consider one attribute with a singular value, the co-occurrence is not relevant
and the only pattern that meets our threshold is Activity type = inactive (b) Activity
type = running. The resulting dataset is shown in Table4.3. We use a binary count
for the field here (i.e. 1 for occurring at least once, 0 otherwise), but could have also
used the number of occurrences as value as we mentioned before. As we can see we
have generated 4 new features which now can be used for machine learning.

4.1.3 Mixed Data

The approaches to add features covering the temporal dimension, that we have intro-
duced above, were very specific for either numerical data or categorical data. Combi-
nations of the two types of attribute values could obviously be beneficial as well. To
establish this, we derive categorical values from the numerical data that can in turn be
used by applying the above algorithm for categorical data. Batal et al. [12] considers
two cases: (1) certain ranges are known that can be used to identify categorical values
(think of low, high, and normal blood pressure), or (2) there is only numerical data
without an interpretation of what the values mean in the specific context (think of
weight, it is difficult to say whether 80kg is a healthy weight if you do not know
how tall a person is). For the former, the translations is obvious. For the latter, the
slope can be used as we have previously seen.We did not formally define it, however,
we assume we can calculate the slope x_slopeit and say it is increasing (x_slopeit is
above some threshold), decreasing (below the threshold), or stable. Although the
approach is relatively simplistic, it has been shown to be quite beneficial (see e.g.
Kop et al. [75]).

4.1 Time Domain 57

Ta
bl
e
4.
3

E
xa
m
pl
e
da
ta
se
ta
ft
er

ad
di
ng

te
m
po

ra
lp

at
te
rn
s
fo
r
at
tr
ib
ut
e
A
ct
iv
ity

ty
pe

T
im

e
po
in
t

H
ea
rt
ra
te

A
ct
iv
ity

le
ve
l

Sp
ee
d

A
ct
iv
ity

ty
pe

A
ct
iv
it
y

ty
pe

=
in
ac
ti
v
e

A
ct
iv
it
y

ty
pe

=
ru
nn
in
g

A
ct
iv
it
y

ty
pe

=
w
al
ki
ng

A
ct
iv
it
y

ty
pe

=
in
ac
ti
v
e

(b
)

A
ct
iv
it
y

ty
pe

=
ru
nn
in
g

T
ir
ed

0
45

L
ow

0
In
ac
tiv

e
-

-
-

-
N
o

1
12
0

H
ig
h

10
R
un
ni
ng

1
1

0
1

N
o

2
45

L
ow

0
In
ac
tiv

e
1

1
0

0
N
o

3
12
0

H
ig
h

10
R
un
ni
ng

1
1

0
1

N
o

4
12
0

H
ig
h

9
R
un
ni
ng

0
1

0
0

Y
es

5
80

M
ed
iu
m

5
W
al
ki
ng

0
1

1
0

Y
es

6
45

L
ow

0
In
ac
tiv

e
1

0
1

0
N
o

7
80

M
ed
iu
m

5
W
al
ki
ng

1
0

1
0

N
o

58 4 Feature Engineering Based on Sensory Data

4.2 Frequency Domain

Previously, we have identified ways to abstract measurements within a time window
to a more aggregated value by means of several aggregation functions (e.g. the
mean over time). In this section, we will move to the so-called frequency domain.
Remember that we explained the lowpass filter before, which also works in the
frequency domain. Let us start with an example to understand this domain a bit
better. Imagine we want to recognize whether our friend Arnold is running. While
we could use a historic window of the accelerometer measurements and, for instance,
the variancewe observe there, it might bemore natural to look at the periodicity in the
measurements of the accelerometer. For example:Dowe see that the accelerometer of
Arnold shows clear periodic measurements (like a sinusoid) with a frequency similar
to a running frequency? For this purpose,we can use Fourier Transformations.We see
these types of features in lots of research papers that use sensory data in combination
with machine learning (see e.g. [7, 8, 21, 74, 93, 98, 115, 128, 129]).

4.2.1 Fourier Transformations

The idea of a Fourier transformation (see e.g. [27]) is that any sequence of mea-
surements we perform can be represented by a combination of sinusoid functions
with different frequencies. A typical example includes sound waves, where we have
waves at different frequencies that combined make up the sound we hear. The math
behind Fourier transformations can be a bit tricky as it involves complex numbers,
but we will guide you through it. Let us assume we have a number of sensory mea-
surements for attribute i [xit−λ, . . . , x

i
t], where t is our current time point and λ the

size of the historical window we consider. While there are many variants of Fourier
transformations, we will focus on the Discrete Fourier Transform (DFT) as there
exists an efficient implementation for this variant. It assumes discrete time (which
we also assume throughout this book) and a finite number of measurements (and of
course we only consider finite values for our window size λ). We create sinusoids
with different frequencies. Consider f0 as the base frequency:

f0 = 2π

λ + 1
(4.7)

Remember that λ + 1 is the number of data points in our window (we consider
λ previous points plus the current time point). We will use multiples of this base
frequency, i.e. k · f0, where k is a natural number. The higher the value of k the higher
the frequency of the signal. To get from k to a frequency in Hertz we need to know
how many datapoints represent a second (called Nsec):

4.2 Frequency Domain 59

f (k) = k/

(
λ + 1

Nsec

)

= k · Nsec

λ + 1
(4.8)

k is the number of periods of the sinusoid over our λ + 1 samples while λ+1
Nsec

is
the number of seconds. For each frequency, we also need to specify an amplitude,
denoted as a(k) here. We need λ + 1 different frequencies to represent our original
sequence. To be more precise, we need frequencies {0 · f0, . . . , λ · f0}, i.e. λ + 1
frequencies, starting at 0. Note that in some cases, frequencies are written from
{−((λ + 1)/2)−1 · f0, . . . , ((λ + 1)/2)−1 · f0} but these can be proven to be identical
to the frequencies we have mentioned first (we will not bother you with the details).
The value of a sinusoid function at frequency k at a time point t is represented as:

vk(t) = a(k) · ei·k·f0·t (4.9)

The i indicates a complex number (i.e. i = √−1). Do not worry about it if you
are unfamiliar with this. What is important to notice is that ei·k·f0·n in fact represents
a sinusoid function with the specified frequency k · f0. This follows from Euler’s
formula:

ei·t = cos(t) + i · sin(t) (4.10)

We believe everyone loves these kinds of mathematical constructs. We can now
compute the value of our measurement at time point t in our window:

xit =
λ∑

k=0

a(k) · ei·k·f0·t (4.11)

Are we done? Well, no, although we have fixed the frequencies of the sinusoid
functions, we do not yet have the amplitudes (a(0), . . . , a(λ)) that match the data in
our window. In fact, this a computational problem we should solve. For this purpose,
the Fast Fourier Transform algorithm can be used, which runtime is proportional
to (λ + 1)log(λ + 1)). We will not go into detail on the working of the algorithm.
Of course, we will have different values for the amplitudes over different windows.
Therefore we extend the notation for the amplitude a bit with the time window we
consider: att−λ(i) represents the amplitude of frequency i in the window [t − λ, t].

Figure 4.1 shows an example of a series of measurements (we consider a very
large window size λ, the full width of the pattern). We set Nsec = 10. If we apply our
Fourier transformation, we can look at the values of the amplitudes of each of our
sinusoid functions with different frequencies (which we can derive from the value
for k and our base frequency). Figure4.2 shows the amplitudes for our case. We see
that the sinusoids representing low frequencies are found to be most important in

60 4 Feature Engineering Based on Sensory Data

Fig. 4.1 Example
measurement sequence (time
in seconds) Note that the
sequence is not displayed as
a discretized sequence while
this is of course the case

Fig. 4.2 Amplitudes for
example data (Note we only
selected the part covering
frequencies between 0 and
1Hz as the rest is all zero)

the decomposition, which makes sense given the characteristics of our data (we see
a combination of low frequency waves).

As we now know how to transform sequential data into the frequency domain, we
will discuss the features that we can distill from it.

4.2.2 Features in Frequency Domain

One obvious set of features we can derive in the frequency domain is the amplitude.
This amplitude is associated with each of the relevant frequencies that are part of the
time window of size λ (i.e. a(0), . . . , a(λ)). It will have a unique value for each time
point we consider:

4.2 Frequency Domain 61

x_ait(0) = att−λ(0)

...

x_ait(λ) = att−λ(λ)

(4.12)

Note that we do not refer to the specific attribute i in our notation for the amplitude
a to avoid an overly complex notation. Depending on the setting for λ, this might
result in a lot of additional features that are very specific. Features that aggregate
these amplitudes and frequencies in a single value have been developed as well. We
will explain a few of them here. First of all, we can take the frequency with the
highest amplitude. This gives us an indication of the most important frequency in
the windows under consideration:

x_max_f it = f (argmax
k∈[0,λ]

att−λ(k)) (4.13)

A second option is to compute the frequency weighted signal average. The metric
provides information on the average frequency observed in the window (given the
amplitudes), and might shed a bit more light on the entire spectrum of frequencies
contrary to our previous approach that just focused on the most dominant one. It is
computed by multiplying the frequencies with their amplitude and normalizing them
by the total sum of the amplitudes:

x_f _weightedit =
∑λ

k=0 a
t
t−λ(k) · f (k)

∑λ−1
k=0 a

t
t−λ(k)

(4.14)

Finally, we can derive the power spectral entropy:

Pt
t−λ(k) = 1

λ + 1
|att−λ(k)|2 (4.15)

ptt−λ(k) = Pt
t−λ(k)

∑λ
i=0 P

t
t−λ(i)

(4.16)

x_power_spec_entropyit = −
λ∑

k=0

ptt−λ(k) ln p
t
t−λ(k) (4.17)

Here, we compute the power spectral density first (squaring the amplitude and
normalizing by the number of frequencies), normalize the values to a total sum
of 1 such that we can view it as a probability density function, and compute the
entropy via the standard entropy calculation. The resulting value represents how
much information is contained within the signal. In other words, the power spectral

62 4 Feature Engineering Based on Sensory Data

entropy determines, whether there are one or a few discrete frequency standing out
of all others.

More features derived from the frequency domain such as the energy of a fre-
quency interval, and the skewedness have been defined and used. See [7] and [118]
for an overview.

4.3 Features for Unstructured Data

Although the quantified self mainly has to do with data obtained in a structured way
(i.e. numerical or categorical attributes), additional information from unstructured
data might also be relevant. A lot of unstructured data is collected that can be used in
machine learning approaches. Just think of the texts Arnold is sending, the Facebook
posts he is generating, and the exercises Bruce is performing to avoid a depression.
In this section, we will briefly discuss the extraction of useful attributes from text-
based data. This is merely one example of unstructured data. Just think of images
and videos, their analysis has recently experienced significant advances throughDeep
Learning approaches [79].

Here, we will focus on some reasonably simple approaches for natural language
processing (NLP) without looking at the semantics of the text. For a more in-depth
discussion of NLP approaches the reader is referred to [46]. We will start with the
pre-processing of the data, followed by several approaches to form attributes based
on different aspects observed in the text.

4.3.1 Pre-processing Text Data

Initially, we are faced with raw unstructured text as a value of an attribute Xi. Imagine
the following fragment:

Bruce: “I really felt bad yesterday. Got fired at work.”

In order to directly create attributes from words or apply some other approaches to
extract attributes we initially need to perform a number of basic steps:

1. Tokenization: identify sentences and words within sentences.
2. Lower case: change the uppercase letters to lowercase.
3. Stemming: identify the stem of each word to reduce words to their stem and

map all different variations of, for example, verbs to a single term.
4. Stop word removal: remove known stop words as they are not likely to be

predictive.

Figure4.3 shows the steps in a graphical form including our example. Note that
the stem of a word does not have to be its formal stem as long as there is a single

4.3 Features for Unstructured Data 63

Fig. 4.3 Simple NLP pipeline

term to map all different variations to. We can perform each of the steps using
a variety of NLP tools. We use the following minimalistic notation for text data:
{xji(1), . . . , xji(S)} represents the S sentences found in instance i of attribute j. Each
sentence contains a number ofwordsW , denotedwithin the brackets for the sentence,
i.e. {xji(1, 1), . . . , xji(1,W)} represents the words in the first sentence.

4.3.2 Bag of Words

After we have identified the words in the various sentences, we are ready to define
attributes for the most simple case. We define so-called n-grams of words. Here,
n represents the number of words we consider as a single unit or attribute. A uni-
gram considers single words, a bigram pairs of words, a trigram a combination of
three words, etcetera. We look at these combinations in each of our sentences. The
approach is called bag of words because we just count the number of occurrences of
words irrespective of their order or occurrence (Algorithm 2). If we were to take our
example, we would end up with the following unigram attributes: really, feel, bad,
yesterday, get, fire, and work. If we were to take bigrams we would get: really feel,
feel bad, bad yesterday, get fire, and fire work. We refer to each new attribute as Aj

and the value of the attribute j for instance i is aji as shown in the algorithm. The value
for an attribute is the number of occurrences of the n-gram in the text associated with
the instance. Sometimes a binary representation is used. Then we simply replace the
count values by binary values to indicate the presence of the n-gram.

4.3.3 TF-IDF

An alternative approach is to use the so-called TF-IDF (for Term Frequency Inverse
Document Frequency, see [103]) score as a value of an instance i for the n-grams we
have identified. This takes into account how unique the n-gram is over the different
pieces of text we see in all instances. First, the term frequency (TF) is the number of
occurrences of an n-gram in the instance (referred to as a document in this case). We
just defined this for the bag of words approach: aji . Now, we normalize the value by

64 4 Feature Engineering Based on Sensory Data

Algorithm 2: Bag of Words (n-grams)
A = {}
Nattr = 1
for i = 1, . . . ,N do

a1i , . . . , a
Nattr
i = 0

for s = 1, . . . , S do
for w = 1, . . . ,W do

if w + (n − 1) ≤ W then
Atemp =< xji (s, w), . . . , xji (s, w + (n − 1)) >

if Atemp /∈ A then
A = A ∪ Atemp

aNattr
i = 1

aNattr
1 , . . . , aNattr

i−1 = 0
Nattr = Nattr + 1

else
k = index(Atemp)

aki = aki + 1
end

end
end

end

dividing by the number of total instances N that contain the n-gram (this is the IDF
part):

idfj = log

(
N

|{i|i ∈ {1, . . . ,N} ∧ aji > 0}|

)

(4.18)

The higher the number, themore unique the n-gram is (i.e. if it occurs in all documents
the value would be the lowest possible: 0). We are now ready to compute the TF-IDF
score:

tf _idf ji = aji · idfj (4.19)

The score gives more weight to n-grams that are unique compared to the regular
counts. This avoids very frequent words to become too dominant in our attributes.

4.3.4 Topic Modeling

The raw usage of n-grams results in a fine-granular and large set of attributes. An
alternative is to use an algorithm that extracts more high-level topics from the set

4.3 Features for Unstructured Data 65

of texts we have available in our dataset (e.g. the topic “work” or “emotions” for
Bruce). Topics are specified by a set of words (all of the words occurring in the text
after applying our NLP pipeline: Nattr) and associated weights w

j
i : topic(k) = {<

A1, w
1
k >, . . . , < ANattr , w

Nattr
k >}. We will give a (hopefully) intuitive explanation

how these topics are derived.
To find the topics we can use multiple approaches. We will use Latent Dirichlet

Allocation (LDA), cf. [20]. In the approach, we assume a generative process for
pieces of text given k topics. This is to say, texts are generated with a certain number
of words W (generated by a Poisson distribution) and a distribution over the topics
following a so-called Dirichlet distribution (e.g. “Typically, 50% of my writing is
work-related, while the other 50% deal with emotions. There aren’t any other topics
I am writing about.”). For each of the W words we select a topic based on the
probabilities. Once we have decided about the topic we choose a word according to
the multinomial probabality distribution that is specific for this topic (e.g. “job” with
a probability of 0.05 for the topic “work”).

The key here is to find the probabilities of the words associated with the topics
(hence, this is what we started with in the first place; words and weights for topics).
We start by assigning a word to a topic at random (giving it a non-zero weight a
single topic, and zero in all others) and iteratively improve the weights to maximize
the match between our generative process given the topics and associated weights
for words and the observed data. The precise details can be found in [20].

Once we have found the weights, we create attributes per topic, and assign a value
based on the observed frequencies of words and weights assigned to the words for
the topic:

topick(i) =
Nattr∑

m=1

ami · wm
k (4.20)

We end up with scores for all topics.

4.4 Case Study

Let us return to our crowdsignals dataset. As our dataset does not contain any free
text, we cannot apply the natural language data approaches. Features in the time and
frequency domain might however be very useful.

66 4 Feature Engineering Based on Sensory Data

4.4.1 Time Domain

Whenwe explore our dataset in a bitmore detail,we do see some relationship between
the numerical measurements and the labels or the heart rate. Due to fluctuations in
the data and the fact that the changes in the measurements are potentially valuable
for prediction tasks, a single measurement at one specific time point might not be
enough. Hence, deriving features in the time domain as we have discussed in this
chapter could turn out to be very useful. We focus on two ways to aggregate our
numerical data in the time domain:We take the standard deviation and the mean over
a certain window size. We make this choice based upon our domain knowledge: The
standard deviation will say something about the variation in the data (walking results
in more variation than standing still for example) while the mean will say more about
the general observations over the last time points with more limited influence of a
single noisy measurement. Let us focus on the example of the attribute acc_phone_x
again. A crucial aspect is the selection of the window size. If we select a too small
window size, the data might be strongly affected by noise. A too large window size
will result in too little variation in our measurements and lack of predictive power.
We experiment with different window sizes (20 instances (5 s), 120 instances (30 s),
and 1200 instances (5min), note that window sizes are specified by instances) and
explore the influence. Figure4.4 shows the results. A window size of 20 instances
results in a lot of noise, while the 1200 instance window evens out most of our
variation. 120 instances is a great middle ground. When considering the figure we
can already see the potential in the new values we derived if we just look at the
occurrence of labels and values at the different time points. It is obvious to use the
aggregation function for similar measurements as well, namely the magnetometer,
gyroscope, and the other accelerometer measurements. In addition, we will apply
it to the other numerical measurements. For the press_phone_pressure, and the pca
attributes we see similar patterns as we have seen for the accelerometer data. For
the hr_watch_rate and light_phone_lux the mean could filter out some noise. The
standard deviation is less obvious but we will see in later chapters whether it is still
useful.

Besides numerical attributes we also have one categorical attribute, namely the
labels. If we apply our categorical abstraction algorithm with patterns of at most
size two, a minimum support of 0.03 (3% of the instances) and a somewhat larger
window size of 1200 instances (since we see prolonged periods of the same label
a larger window size provides more interesting patterns covering combinations of
different labels) we obtain the patterns shown in Table4.4. The parameter choice is
achieved by experimentation: we want to have a good number of patterns, but do not
want to get a lot of patterns that hardly occur. While this is not an exact algorithm,
experimentation can be beneficial for predicting, e.g. running or walking a number
of time points could be predictive for the heart rate. We will therefore include these
features in our dataset as well and study the benefit of the newly created columns
later on.

4.4 Case Study 67

Fig. 4.4 Numerical temporal aggregation with different window sizes (a window size of 20 resem-
bles 5 s, 120 is 30 s, and 1200 is 5min)

Table 4.4 k-patterns found in temporal abstraction

1-patterns (7) 2-patterns (10)

OnTable, Sitting, Walking,
Standing, Driving, Eating,
Running

OnTable (b) OnTable, Sitting (b) Sitting, Walking (b) Walk-
ing, Walking (b) Standing, Walking (b) Driving, Standing (b)
Walking, Standing (b) Standing, Driving (b) Driving, Eating (b)
Eating, Running (b) Running

4.4.2 Frequency Domain

Besides the time domain we also explore the frequency domain. We again need to
select a window size to compute the amplitudes of the frequencies using a Fourier
Transformation. In this case we select a slightly different window size (as 120
instances gives us a huge number of additional features), namely 40 instances, which
equals 10 s. This reduces the number of features while the interesting frequencies
(e.g. the frequency of walking) are still considered. Figure4.5 focuses on the attribute
acc_phone_x and shows the features which aggregate the frequencies that we have
discussed before, including the maximum frequency, the frequency signal weighted
average, and the power spectral entropy. In terms of the frequency with the high-
est amplitude, we see that there are activities where the lower frequencies clearly
score highest (sitting, driving), while other activities show relatively high frequen-
cies (walking running) while for other activities the picture is less clear. Obviously,
it could be more clear cut if we consider the amplitudes of all frequencies. The fre-

68 4 Feature Engineering Based on Sensory Data

Fig. 4.5 Frequencies with the aggregated features for the Fourier transformation combined with
the labels

quency signal weighted average visually does not provide us with a lot of additional
information, we see some extreme outliers causing the other values to be more or
less similar in the figure. The power spectral entropy shows a similar pattern as we
have seen for the frequency with the highest amplitude, although it seems to con-
tain less noise. For all periodic measurements (all accelerometer, gyroscope, and
magnetometer measurements) we add the amplitudes over all frequencies for the 40
instance windows as features and the three aggregate features to the dataset.

4.4.3 New Dataset

We have now created quite a few new attributes. However, since we use overlapping
time windows the resulting attributes are highly correlated (see Fig. 4.6). Given this
overlap, just including all instances might not provide us with new information as
only one point in the window differs for adjacent instances. Hence, the aggregated
value is likely very similar. This can potentially cause overfitting. Therefore we
usually set a maximum overlap for the windows and accordingly remove instances
forwhich this criterion is notmet (i.e. we remove intermediate data points). Typically,
50% overlap is allowed for (see e.g. [7, 15]). Due to the limited amount of data we

4.4 Case Study 69

Fig. 4.6 Overlapping
windows

have available, we use 90%. This leaves us with 2895 instances. Of course we do
lose some information, but it has been shown to pay off as we have less very similar
instances in our set that could cause overfitting.

4.5 Exercises

4.5.1 Pen and Paper

1. We have seen several functions that summarize numerical values within the time
domain to a single number (i.e. mean, standard deviation, minimum, and maxi-
mum). Provide an example for all four functions that shows where that specific
form of summarization can be useful.

2. Define at least two additional summarization functions for numerical values in
the time domain and explain what their added value would be over the four we
have already defined in the book. Provide intuitive examples to illustrate your
point.

3. The algorithm we have seen for the extraction of temporal patterns from categor-
ical data tries to reduce the complexity by only considering extensions to patterns
by attribute value pairs that are sufficiently frequent. Still, the algorithm is quite
demanding in terms of computational complexity as we have to figure out the
support for a lot of patterns. Think of ways we can use to further reduce this
computational complexity.

4. We have discussed a number of features in the frequency domain, including
amplitudes for different frequencies, the frequency with the highest amplitude,
the frequency weighted signal average, and the power spectral entropy. Find at
least two more features we can extract from the frequency domain, and explain
their purpose.

70 4 Feature Engineering Based on Sensory Data

5. Sometimes we see negative amplitudes in our Fourier transformations. Explain
what these negative values signify.

6. Besides generic features, we might also have dedicated features we engineer for
a specific domain. Imagine that we want to learn a model that predicts someones
mood based on the amount of social activity. Define three dedicated features
that can be useful in this context based on measurements we can potentially be
collected from the mobile phone.

7. We have discussed dedicated approaches for handling text based data. One aspect
we discussed was to perform stemming on the words to make sure all conjugates
of verbs or plural forms of nouns are considered as the same word. Think of one
advantage and one disadvantage of using stemming.

8. Imagine that we are working on a supervised learning problem with two classes.
One class only occurs in 2% of the cases. When we apply topic modeling, are we
guaranteed to get topics that distinguish the different classes well? If not, what
could be a solution to solve this problem?

4.5.2 Coding

1. Explore the frequency domain features for the crowdsignals dataset in more
detail, consider the individual frequencies for the different measurements and
see whether you can find interesting patterns. Do you see consistent amplitudes
of certain frequencies during the same activities? And how do the amplitudes
differ for the different activities?

2. Implement at least two additional metrics in the time domain and the frequency
domain in addition to the ones already present in the data (e.g. the ones you have
identified in a previous question). Calculate them for the crowdsignals data and
discuss their usefulness.

3. Use your own dataset you have collected in Chap.2 or the dataset you have found
on the web and apply the approaches that have been explained in this chapter to
identify features. Try different settings for the parameters (e.g. the window size).
Report on your findings in a similar way as we have done for the crowdsignals
dataset.

4. Find or create a dataset which contains a text component and can be considered a
supervised learning problem.Apply the three algorithms that have been explained
in this chapter to extract features from the text and explore their relationship to
the class value. Would they be useful predictors?

http://dx.doi.org/10.1007/978-3-319-66308-1_2

Part II
Learning Based on Sensory Data

Chapter 5
Clustering

This chapter is devoted to techniques that can provide us with insights in the data,
namely whether we can find some structure in terms of clusters in the data. For
instance, we might want to identify clusters of locations often visited by Bruce to
see what impact a specific location has on his mood. You could also be interested
in finding clusters of points that identify different levels of activity for Arnold. An-
other option is finding clusters of like-minded people, that way we could offer them
feedback and support, which seems to work well for their fellow clustermen. We
will treat such clustering algorithms in this chapter. The membership of data points
or people in a certain cluster might in turn become an attribute for our predictive
models later on. We will start by discussing the learning setup.

5.1 Learning Setup

We should consider our specific setting of the quantified self before we can start
to apply clustering algorithms. You can imagine that there are many people that
generate datasets in the quantified self; there might be a lot of “wannabe Arnold’s”
and a lot of “please do not let me become Bruce” people out there. We will refer to
the datasets of n specific people by means of the notation qs1, . . . , qsn resulting in
their datasets Xqs1 , . . . ,Xqsn . Furthermore, let xi,qsj denote the ith data point of the
jth person. When it comes to clustering, we have two levels on which we can cluster:
individual data points and the level of a person. Let us consider an example to make
the distinction clear. Assume that Arnold is generating data with his accelerometer.
Wemight be interested to find clusters of data pointswith respect to the accelerometer
data that represent different activities (e.g. a cluster for walking, jogging, cycling,
etc.). This would be clustering over individual data points. Of course, you might take
the union of data sets of multiple people as a basis for this type of cluster if desired.
On the other hand, we might be interested in defining types of people we collect data

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_5

73

74 5 Clustering

from, e.g. a cluster for people who share similar characteristics as Arnold or Bruce.
To make this more formal, the points in the clustering space we consider for the two
scenarios are:

• individual data points:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,qs1
...

xN,qs1
...

x1,qsn
...

xN,qsn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• person:

X =
⎡
⎢⎣
Xqs1

...

Xqsn

⎤
⎥⎦

Obviously, this choice has an impact on how to define the distance between the points
in the clustering space. We will see this in the next section.

5.2 Distance Metrics

Clustering algorithms in general work with a notion of distance between points. We
will look at the distances between points for our different setups of our clustering
problem.

5.2.1 Individual Data Points Distance Metrics

For individual data points there are a lot of commonly used distance metrics. It
depends on the nature of the data which one would be appropriate to use. In case
we only have numerical data we can use two of the most well known metrics, the
Euclidean and theManhattan distance. The two distances between data points xi and
xj are defined as follows:

5.2 Distance Metrics 75

euclidean_distance(xi, xj) =
√√√√

p∑
k=1

(xki − xkj)
2 (5.1)

manhattan_distance(xi, xj) =
p∑

k=1

|xki − xkj | (5.2)

The Euclidean distance corresponds to what we typically just call the distance be-
tween two points. The Manhattan distance is an alternative and considers that you
can only connect points by moving horizontally or vertically and not diagonally as
the Euclidean distance does. It uses a distance function similar to the movement over
a grid (like the map of Manhattan, hence the name). An illustration of the difference
is shown in Fig. 5.1.

The choice for either one of the two approaches highly depends on the dataset
and can mostly only be determined after rigorous experimentation.

A generalization of the above metrics is the so-called Minkowski distance:

minkowski_distance(q, xi, xj) = (

p∑
k=1

|xki − xkj |q)
1
q (5.3)

We can see that minkowski_distance(1, xi, xj) ≡ manhattan_distance(xi, xj) and
minkowski_distance(2, xi, xj) ≡ euclidean_distance(xi, xj).Whenconsidering these
distance metrics, one should also consider whether scaling the data is needed or not.

Fig. 5.1 Difference between Euclidean and Manhattan distance

76 5 Clustering

Otherwise, certain attributes with a high magnitude and spread of observed values
might get a very dominant role in the distance calculations.

Whenwehave a combinationof numerical and categorical attributeswe cannot use
the above distance metric.We could transform our categorical attributes into a binary
representation, each value of the attribute becoming a new binary attribute. Another
metric that can be used is Gower’s similarity measure. With Gower’s similarity, we
only use an attribute k to measure the distance in case it has a value for both instances
i and j (i.e. both are not unknown). The similarity for the attribute k is s(xki , x

k
j). It

is defined in a different way for different types of variables. The outcome is always
scaled to [0, 1]. For dichotomous variables (present or not) it is defined as

s(xki , x
k
j) =

{
1 when xki and x

k
j are both present

0 otherwise
(5.4)

For categorical data:

s(xki , x
k
j) =

{
1 when xki = xkj
0 otherwise

(5.5)

And for numerical data:

s(xki , x
k
j) = 1 − |xki − xkj |

Rk
whereRk is the range of k (5.6)

In order to compare to instances, we compute these functions for all attributes and
divide the sum of these values by the number of possible comparisons. This leads us
to Gower’s similarity measure:

gowers_similarity(xi, xj) =
∑p

k=1 s(x
k
i , x

k
j)∑p

k=1 δ(xki , x
k
j)

(5.7)

where δ(xki , x
k
j) is defined as

δ(xki , x
k
j) =

{
1 when xki and x

k
i can be compared (i.e. both have values)

0 otherwise
(5.8)

The distance is calculated by taking 1 minus the similarity. This concludes our
discussion of distance metrics between individual data points.

5.2 Distance Metrics 77

5.2.2 Person Level Distance Metrics

When we want to cluster datasets of individuals, it becomes a bit more difficult.
We now need a distance metric between complete datasets. To determine a suitable
metric, we first need to understand how comparable datasets are. If datasets consist
of time series that have been measured at the same granularity there are various ways
to compute the distance between them. This does not hold for the general case where
we do not assume a temporal ordering of the instances. Let us consider the case
without temporal ordering first, and then look into comparing time series.

5.2.2.1 Non-temporal Distance Metrics

We have a set of variables X1, . . . ,Xp. For each variable Xi, we have a number of
measurements Nqsj for person j: xi1,qsj , . . . , x

i
Nqsj ,qsj

. For each person we summarize

these values for the variable Xi in a single value, thereby creating a single instance
per person. Using these instances we can apply the distance metrics we have ex-
plained previously. We can use the mean, standard deviation, minimum, maximum,
or whatever summarizing function is deemed appropriate in the domain. For cate-
gorical attributes we can create new binary attributes for each value of the original
attribute and use a similar approach. While our approach is simple (which is always
nice), we might have lost a lot of information in our summarization step.

An alternative is to summarize themeasurements for a specific variable of a person
by means of its distribution (e.g. for the normal distribution this would be μ and σ 2).
Hence, we fit a distribution to the data and use the parameter values of the model
to summarize the values collected for a person and the difference in these values
signifies the distance.

While the previous option is better than just summarizing by means of a single
number, a third alternative exists, which is based on statistical tests. Specifically, we
can test how the distributions of a variable for two different persons varies for numer-
ical data, resulting in a probability for the assumption that both originate from the
same distribution. This probability is often referred to as the p-value. The closer the
distributions are, the smaller is the p-value. Sowe take 1−p as a distancemetric. Any
statistical test can be used depending on the distributions. The Kolmogorov-Smirnov
test (cf. [73]) could be a nice choice here since it does not make any assumptions
about the underlying distribution. A graphical illustration of the three approaches
that have been discussed is shown in Fig. 5.2.

5.2.2.2 Temporal Distance Metrics

If we want to compare time series that are measured with the same granularity we
can use other distance metrics. There are three options as discussed by Liao [81]:
raw data-based, feature-based, and model-based.

78 5 Clustering

Fig. 5.2 Three approaches for calculating non-temporal person-level distances

Raw-Based Distance Metrics. Let us consider the raw data-based clustering first.
For this approach we take the raw series of data for each attribute and define a
distance metric. In Fig. 5.3, two series of accelerometer data generated by Arnold
and his training buddy Eric are shown. We want to discuss three versions of the
raw data-based approach. The first approach focuses on the differences between

Fig. 5.3 Two example time
series of Arnold and his
buddy Eric

5.2 Distance Metrics 79

individual data points using for example the Euclidean distance. This is done by
taking the vector with all measurements for a specific attribute l over time:

euclidean_distance_per_attribute(xlqsi , x
l
qsj) =

√√√√ N∑
k=1

(xlk,qsi − xlk,qsj)
2 (5.9)

Note that this does assume an equal number of points (i.e. we have the same N
for both datasets). We can find the overall distance by summing the values over all
attributes:

euclidean_distance(xqsi , xqsj) =
p∑

l=1

euclidean_distance_per_attribute(xlqsi , x
l
qsj) (5.10)

An alternative is to consider the cross correlation between the two different time
series. We can use the Pearson correlation coefficient, however the time series we
compare might be shifted. We therefore use an approach to handle shifts in the
patterns using a lag. Consider the two time series in Fig. 5.3 again. We see that they
are very similar, only the peak in Eric’s values has been shifted in time. Given a shift
in time τ , the cross-correlation coefficient is defined as follows:

ccc(τ, xlqsi , x
l
qsj) =

min(Nqsi ,Nqsj−τ)∑
k=1

xlk,qsi · xlk+τ,qsj (5.11)

We see that the values of person j are shifted and the product of the values is taken.
We sum over all available time points for which we can pair them up. The higher
the value of this metric, the more the time series are aligned: if peaks align the
product will become highest. Finding the value for τ which maximizes Eq.5.11 is
an optimization problem. In the end, the value for the distance can be defined as:

cc_distance(xqsi , xqsj) = argmin
τ=1,...,min(Nqsi ,Nqsj)

p∑
k=1

1

ccc(τ, xkqsi , x
k
qsj)

(5.12)

We optimize the value of τ over all attributes as the time series should be shifted
by the same value across all attributes. A third raw data-based approach is called
dynamic time warping (DTW) (cf. [14]). The cross-correlation coefficient allows
for time series that are shifted, but DTW can also take into account that there is
a difference in speed between different time series. For instance, if we consider
Arnold and Eric their sequences seem to align quite well, except that Eric slowly
builds up towards his peak while Arnold does not. We might want to consider these
series as relatively close to each other. TheDTWalgorithm tries to pairmeasurements
(or time points/instances to phrase it differently) of the two time series, i.e. we match
each time point in one series to a time point in the other series. These pairs are ordered
and can be identified by an index k going from 1 to the time series with the longest

80 5 Clustering

length (i.e.max(Nqsi ,Nqsj)). Our pairing does come with the constraints that the time
order needs to be preserved (monotonicity condition) and we need to match the first
and last points (boundary condition). Let seq(k, qsj) denote the sequence number of
pair k with respect to qsj, then we formalize the monotonicity constraint as follows:

∀l ∈ 2, . . . ,max(Nqsi ,Nqsj) : (seq(l, qsi) ≥ seq(l − 1, qsi))∧
(seq(l, qsj) ≥ seq(l − 1, qsj)) (5.13)

Furthermore, the boundary condition is:

seq(1, qsi) = seq(1, qsj) = 1 (5.14)

seq(max(Nqsi ,Nqsj), qsj) = Nqsj (5.15)

seq(max(Nqsi ,Nqsj), qsi) = Nqsi (5.16)

The problem of finding a matching is graphically illustrated in Fig. 5.4. We see
the time series of Arnold on the left and the series of Eric at the bottom. Each square
in the figure represents a possible pair. Each row is a time point for Arnold while
each columns represents a time point for Eric. Moving ahead in time for Arnold is
the same as moving up, while moving to the right is moving ahead in time for Eric.
To find the pairs, we start at the bottom left and continue by matching points. To find
a new pair, we can move up in this figure or move to the right, or both. Given our
monotonicity constraint, we can never move down or to the left and our boundary
condition requires that we start at the bottom left and end at the top right. The blue
squares give an example of a path. The procedure to determine the minimum cost
per position in the figure is shown below. In the end, the minimum cost in the upper
right corner is returned as the dynamic time warping distance.

Fig. 5.4 Example dynamic
time warping for example
series of Arnold and Eric

5.2 Distance Metrics 81

Algorithm 3: Dynamic Time Warping

dtw_distance(XT
qsi ,X

T
qsj) :

for k ∈ 1, . . . ,Nqsi do
cheapest_path(k, 0) = ∞

end
for k ∈ 1, . . . ,Nqsj do

cheapest_path(0, k) = ∞
end
cheapest_path(0,0) = 0
for k = 1, . . . ,Nqsi do

for l = 1, . . . ,Nqsj do
d = distance(xk,qsi , xl,qsj)
cheapest_path = d + min({cheapest_path(k − 1, l), cheapest_path(k, l −
1), cheapest_path(k − 1, l − 1)})

end
end
return cheapest_path(Nqsi , Nqsi)

The algorithm states that we cannot move outside of our time series (giving an
infinite value for moving before the first point). We then calculate the minimum cost
for each position in our search space (i.e. the squares shown in Fig. 5.4). This is
the cost of the difference between the values in that square and the cheapest path
that leads towards it. We typically use the Euclidean distance as the distance metric.
Many improvements have been applied to this algorithm, for instance, limiting the
maximum difference in time points of pairs, and more efficient calculations (e.g.
the Keogh bound [70]). With this approach, we do not consider individual attributes
but focus on the distance between the values of all attributes since we are trying to
match time points over the whole dataset. According to some domain knowledge,
it would also be possible to consider attributes on an individual basis and perform
DTW individually if desired. Although we have not discussed categorical attributes
in the context of raw data-based approach, they can be treated in the same way as we
have mentioned before, by creating binary attributes per category.

Feature-Based Distance Metrics. As said before, we can also take a feature-based
approach to comparing two time series. In order to do so, we extract features from
the time series. For this purpose we can employ the same distance metrics as we
have explained for the general case X by simply ignoring the temporal ordering.
Alternatively, features similar to Chap. 4 can be used. To compare two time series
we finally compare the derived features.

Model-Based Distance Metrics. For the model-based approach we fit a model our
time series (e.g. a time series model as explained later in Chap. 8) and use the pa-
rameters of the model for the characterization of the time series. We compute the
difference between these parameters and use it as the distance between persons.

http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_8

82 5 Clustering

5.3 Non-hierarchical Clustering

We have defined a number of distance metrics for both the cases of individual points
and person level datasets. Given these distance measures we can now start clustering.
For convenience we will use the notation for the individual data points.

We will start with the algorithm called k-means clustering [82]. In this approach,
a predefined number of clusters k is found. Each cluster can be identified by a cluster
center. The cluster centers are initially set randomly and then refined in a loop. The
algorithm is shown in Algorithm 4.

Algorithm 4: k-means clustering

for i = 1, . . . , k do
centers[k] = random point in the clustering space

end
prev_centers = []
while prev_centers != centers do

prev_centers = centers
cluster_assignment = []
for i = 1, . . . ,N do

cluster_assignment[i] = argminj=1,...,kdistance(xi, centers[j])
end
for j = 1, . . . , k do

centers[j] =
∑

l∈{i|cluster_assignment[i]=j} l
|{i|cluster_assignment[i]=j}|

end
end

In the main algorithm loop we compute which cluster each point belongs to. This
cluster is selected based on the minimum distance between the point and the cluster
center. Once we have calculated this for all data points, we recompute the center of
the cluster by taking the average over all data points in the cluster. This continues
until the centers do not change anymore (or only change with a very small value).
This approach is quite intuitive for individual data points and approaches where we
aggregate datasets to single points.

Let us consider an example from the quantified self domain. Imagine we have
data points that represent two dimensions of the accelerometer data and we want to
cluster them in two clusters (i.e. k = 2). Figure5.5 shows an example of the first steps
of the k-means clustering algorithm. Here, the blue and red points are the data points
while the black points are the cluster centers. After step 4, only one more update of
the centers is required before the centers stabilize and the algorithm terminates. For
distance metrics that are computed between whole datasets (i.e. the person level) and
are raw-based k-means clustering is neither appropriate nor intuitive (what does the
center of a set of datasets mean?). It has also been shown that k-means clustering
does not always work well with dynamic time warping (cf. [90]).

5.3 Non-hierarchical Clustering 83

Fig. 5.5 Example of first steps of k-means clustering algorithm (with k = 2)

An alternative approach is k-medoids (cf. [67]). Instead of assigning cluster cen-
ters that are averages over the points belonging to the cluster, the k-medoids algorithm
selects points from the dataset as cluster centers. This solves our previous problem
we have identified with the person level data and also works well with dynamic time
warping. The algorithm is very similar to the k-means clustering and is shown in
Algorithm 5. The difference appears where the cluster center is assigned. Here, the
actual point that minimizes the distance to all points in the cluster is selected.

Let us briefly take a step back:Without explicitly referring to clusteringwehave al-
ready seen another approach in Sect. 3.1.1.2 that supports clustering, that is Gaussian
mixture models. In Sect. 3.1.1.2, we used this approach to identify outliers. In order
to do so, we assumed that the data points were generated from a probability dis-
tribution that was constituted by a number of independent normal distributions and
identify outliers with respect to this probability distribution. Implicitly we assumed
that each data points, that is not an outlier, belongs to one of the independent normal
distributions. Thus, each of these independent normal distributions can be interpreted
as a cluster. What is the difference between mixture models and k-means/k-medoids
clustering? For k-means/k-medoids we did not assume a probability distribution that
generated the data points. Both approaches are appropriate for different applications:
While mixture models are used for outlier detection or estimating probability densi-

http://dx.doi.org/10.1007/978-3-319-66308-1_3
http://dx.doi.org/10.1007/978-3-319-66308-1_3

84 5 Clustering

Algorithm 5: k-medoids clustering

for i = 1, . . . , k do
centers[k] = random point from x1, . . . , xN not part of centers yet

end
prev_centers = []
while prev_centers != centers do

prev_centers = centers
cluster_assignment = []
for i = 1, . . . ,N do

cluster_assignment[i] = argminj=1,...,kdistance(xi, centers[j])
end
for j = 1, . . . , k do

centers[j] = argminl∈{i|cluster_assignment[i]=j}
∑

q∈{i|cluster_assignment[i]=j} distance(xl, xq)
end

end

ties, k-means clustering supports visualization and compression. By compression we
mean, that high dimensional data points are represented by the cluster they belong to.

5.4 Hierarchical Clustering

The approaches we have seen so far require a predefined number of clusters and we
only considered cluster that did not overlap. In hierarchical clustering, however, we
drop both requirements. We either start with one big cluster and sequentially refine
it (divisive clustering) or start with each instance in its own cluster and combine
clusters. The latter is called agglomerative clustering. Before we dive into the details
of the approach, let us consider the end-product of such a clustering which is often
a dendrogram. The dendrogram shows the results of clustering on different levels,
going from one cluster at the top to the most refined clusters at the bottom. This
allows us to select the level of clustering which is appropriate for the domain. For an
extensive overview of the approaches, see [68].

Figure5.6 shows an example based on datasets of a number of quantified selves.
Each depth of the dendrogram represents a cutoff value for our algorithms. Let us
look into both approaches in a bit more detail.

5.4.1 Agglomerative Clustering

In agglomerative clustering, we start with each data point being an independent
cluster and combine them until all data points constitute one cluster. Which clusters
to combine depends on the distance between clusters. We assume to have a distance
function between two data points xi and xj (which we have discussed extensively

5.4 Hierarchical Clustering 85

Fig. 5.6 Example of a dendrogram

before) noted as distance(xi, xj). Given that we have clusters Ck and Cl we can
define the distance between clusters in a variety of ways. We will discuss three here.
First, the single linkage defines cluster distance as:

dSL(Ck,Cl) = min
xi∈Ck ,xj∈Cl

distance(xi, xj) (5.17)

Hence, we take the distance between the two closest points as the distance between
the clusters. The opposite is called complete linkage and takes the distance between
two points that are farthest apart:

dCL(Ck,Cl) = max
xi∈Ck ,xj∈Cl

distance(xi, xj) (5.18)

86 5 Clustering

Third (and naturally) we can use the average distance between the points in the
clusters referred to as the group average:

dGA(Ck,Cl) =
∑

xi∈Ck

∑
xj∈Cl

distance(xi, xj)

|Ck| · |Cl| (5.19)

A slightly different criterion is Ward’s method [124]. It defines the distance between
clusters as the increase in the standard deviation when the clusters are merged.
Assume that mCi represents the center of cluster Ci, then the distance is defined
as:

dWard(Ck,Cl) =
∑

xi∈Ck∪Cl

||xi − mCk∪Cl ||2 −
∑
xj∈Ck

||xj − mCk ||2 −
∑
xn∈Cl

||xn − mCl ||2 (5.20)

Each one of the between cluster distance metrics comes with its own pros and cons,
but in general the latter two provide a nice middle ground between a very strict
condition for joining clusters (complete linkage) and avery loose one (single linkage).
The algorithm to merge clusters is expressed in Algorithm 6. It works by means of
a predefined threshold th for the maximum distance in order to still merge clusters.
Intuitively, this threshold represents a horizontal position in the dendrogram, resulting
in a certain division in clusters.

Algorithm 6: Agglomerative clustering
clusters = {}
for xi ∈ X do

clusters = clusters + {xi}
end
while True do

Ck,Cl = argminCk∈clusters,Cl 	=Ck∈clusters d(Ck,Cl)

if d(Ck,Cl) > th then
return clusters

else
clusters = clusters \ {Ck}
clusters = clusters \ {Cl}
clusters = clusters + {Ck + Cl}

end

We can see that we start with clusters of one data point and merge clusters until we
can no longer find clusters that are sufficiently close.

5.4 Hierarchical Clustering 87

5.4.2 Divisive Clustering

As said, divisive clustering works right in the opposite direction of agglomerative
clustering. Therefore we start with a single cluster. Let us define the dissimilarity of
a point to other points in its cluster:

dissimilarity(xi,C) =
∑

xj 	=xi∈C distance(xi, xj)

|C| (5.21)

Using this metric we can split a cluster C by considering the point with the greatest
dissimilarity to the cluster. We create a new cluster C′ for this and continue moving
the most dissimilar points from cluster C to C′. We stop when there is no point left
that is less dissimilar to the points in cluster C′ than it is to the remaining points in
cluster C. So what cluster should we select for the process we have just described?
Various criteria have been defined, one being the cluster with the largest diameter
(cf. [68]):

diameter(C) = max
xi,xj∈C

distance(xi, xj) (5.22)

In other words, the diameter is the maximum distance between points in the cluster.
This is used in Algorithm 7.

Algorithm 7: Divisive clustering
clusters = {{x1, . . . , xN }}
while |clusters| < N do

C = argmaxC∈clustersdiameter(C)

clusters = clusters \C
most_dissimilar_point = argmaxx∈C dissimilarity(x,C)

C = C\ most_dissimilar_point
Cnew = {most_dissimilar_point}
point_improvement = ∞
while point_improvement > 0 do

x = argmaxx∈C dissimilarity(x, C)
distance_C = dissimilarity(x,C)

distance_Cnew = dissimilarity(x,Cnew)

point_improvement = distance_Cnew - distance_C
if point_improvement > 0 then

C = C \ x
Cnew = Cnew + x

end
end
clusters = clusters + C + Cnew

end
return clusters

88 5 Clustering

Although we do not explicitly have the threshold set in this algorithm but work on
a cluster by cluster basis, a dendrogram as we have seen before is the result of this
procedure.

5.5 Subspace Clustering

While the approaches above are simple, intuitive, and in general work quite nicely,
they do have some disadvantages when it comes to our quantified self setting. We
might have a huge attribute space (wemeasure more and more around ourselves) and
this causes several problems: (1) our approaches will take a long time to compute,
(2) calculating distances over a large number of attributes can be problematic and
distances might not distinguish cases very clearly, and (3) the results will not be
very insightful due to the high dimensionality. Hence, we need to define a subset
of the attributes (or subspace) to perform clustering. We could do this manually
or use dimensionality reduction approaches such as Principal Component Analysis.
However, the manual approach would need a lot of experimentation, while the latter
would not provide intuitive results, as we transform the attributes that initially had a
meaning to a less meaningful new space. Methods from subspace clustering come
to rescue here. We will explain one specific subspace clustering algorithm, namely
the CLIQUE algorithm [4].

Starting point for our explanation is that we create so-called units that partition
the data space. Hereto, we split the range of each variable up into ε distinct intervals.
This is exemplified for the dataset shown in Fig. 5.7. The splits are shown by the
dotted lines.

Assuming k ≤ p dimensions or attributes (we can take subsets of the attributes),
a unit u is defined by means of boundaries per dimension: u = {u1, . . . , uk}.

Fig. 5.7 Example of units in
subspace clustering

5.5 Subspace Clustering 89

A bound is provided for each dimension for the unit. ui(l) is the lower bound and
ui(h) the upper bound for dimension i. A point belongs to a unit when it falls within
all bounds:

belongs_to(x, u) =
{
1 ∀i∈1,...,kui(l) ≤ xi < ui(h)

0 otherwise
(5.23)

For each unit we can define the selectivity and density of the unit u:

selectivity(u) =
∑N

i=1 belongs_to(xi, u)

N
(5.24)

dense(u) =
{
1 selectivity(u) > τ

0 otherwise
(5.25)

In other words, the selectivity is defined as the fraction of instances belonging to the
unit u out of all instances, while a unit is called dense when the selectivity exceeds
some threshold τ . In Fig. 5.7, we choose τ so that at least one instance is in the
unit. This results in 6 dense units. These units are depicted in grey. As said, the
units do not have to cover all dimensions (in fact we would rather like it if they do
not). Assuming a unit covers k dimensions (with k ≤ p) we define a cluster as a
maximal set of connected dense units. Units u1 = {r1, . . . , rk} and u2 = {r′

1, . . . , r
′
k}

are directly connected when they have what is called a common face (i.e. when they
share a border of a range on one dimension and have the same ranges on the others):

common_face(u1, u2) =

⎧⎪⎨
⎪⎩

1 ∃i ∈ 1, . . . , k : (ri(l) = r′
i(h) ∨ ri(h) = r′

i(l))∧
∀j 	= i ∈ 1, . . . , k : (ri = r′

i)

0 otherwise
(5.26)

Furthermore, indirect connections are also considered. Overall units are connected
in a cluster when:

connected(u1, u2) =

⎧⎪⎨
⎪⎩

1 common_face(u1, u2)∨
∃u3 : common_face(u1, u3) ∧ common_face(u2, u3)

0 otherwise
(5.27)

If we consider dense units as defined previously that are connected in our figure we
obtain three clusters. These clusters can be specified by means of ranges of values
that make up the region. For example, the upper right cluster can be expressed as
(0.6 ≤ X1 < 1) ∧ (0.6 ≤ X2 < 1) but also by (0.6 ≤ X1 < 0.8) ∧ (0.8 ≤ X1 <

1) ∧ (0.6 ≤ X2 < 1). We call the minimal description of a cluster the smallest set
of regions that still covers all units in the cluster. In our case this would be the first

90 5 Clustering

description. Alright, the stage is set. How dowe find units that are dense over all these
different dimensions? The first problem we tackle is finding these units efficiently.
Given the size of our search space, we cannot make calculations for each possible
unit in each possible subset of our dimensions. To reduce the search space, we use
the fact that a unit u can only be dense in k dimensions if all units of k−1 dimensions
that are a subset of the constraints for unit u are also dense. This makes sense as the
unit u covers a smaller part of the data space (it splits the data up in an additional
dimension) and thus can never have more data instances in it. Thus we start with 1
dimension and work our way up to more dimensions. The generation of candidate
units with k dimensions given the units with k − 1 attributes known to be dense is
expressed in Algorithm 8. Here, Ck denotes the set of candidate units of dimension
k and Rk−1 stands for the set of dense units of dimensions k − 1. ui(a) refers to
the name of the ith attribute of unit u. We look for two units that are part of the
dense units in dimensions k − 1, of which the attributes and bounds overlap in k − 2
units and add the two non overlapping attributes (and associated ranges) to create a
unit with dimension k, so we essentially create a unit with one additional attribute
compared to the two units we have identified for dimension k − 1. An ordering is
assumed (indicated by <) to avoid doubles. For all candidates generated based on
this algorithm, we compute whether they are dense or not.

Algorithm 8: Dense unit candidate generation from k − 1 to k attributes
Ck = []
for u, u′ ∈ Rk−1 do

if u1(a) == u′
1(a) ∧ u1(h) == u′

1(h) ∧ u1(l) == u′
1(l) ∧ · · · ∧

uk−2(a) == u′
k−2(a) ∧ uk−2(h) == u′

k−2(h) ∧
uk−2(l) == u′

k−2(l) ∧ uk−1(a) < u′
k−1(a) then

Ck = Ck+ < u1, . . . , uk−1, u′
k−1 >

end
end
return Ck

While this already helps in terms of computation, we can further improve matters
by focusing on subspaces (i.e. subsets of the attributes) that contain a significant
proportion of the overall data points. Assuming subspaces S1, . . . , Sn we compute
the number of points that belong to the units that are part of the subspace and that are
part of a dense unit (following our previous algorithm). We call this the coverage:

coverage(Si) =
∑
u∈Si

(dense(u) ·
N∑
i=1

belongs_to(xi, u)) (5.28)

Only subspaceswith a large coveragewill be selected.We therefore sort the subspaces
according to their coverage score: S1, . . . , Sn where S1 has the highest coverage.
We want to create a set of selected subspaces I and those we want to prune P. For

5.5 Subspace Clustering 91

this purpose we select a point i in the ordered list at whichwe split it: I = {S1, . . . , Si}
and P = {Si+1, . . . , Sn}. We choose i based on a heuristic that aims at minimizing
the number of bits required to send information on the values of the coverage for
all subspaces. The lower the amount of information we need to send, the better the
split we have obtained. Given split i the minimum information we are required to
send is the average coverage of the subspaces in I (called μI(i)) and P (μP(i)) and
the deviation of the coverage of each subspace from this average. Since we send the
information in bits we take the log2 of these values:

μI(i) =
∑i

j=1 coverage(Sj)

i
(5.29)

μP(i) =
∑n

j=i+1 coverage(Sj)

(n − i)
(5.30)

information(i) = log2(μI(i)) + log2(
i∑

j=1

|coverage(Sj) − μI(i)|)+

log2(μP(i)) + log2(
n∑

j=i+1

|coverage(Sj) − μP(i)|) (5.31)

All we need to do is find the value of i that minimizes this sum. The idea behind this
approach is that the pruned set will contain all subspaces with very low coverages
(and thus low variation and information).

We now have a selection of subspaces of certain dimensions and we know how
to effectively compute dense units within those subspaces. A logical next step is
to find units that when combined make up clusters in a certain subspace. We can
do this using a depth first search like algorithm. Part of the procedure is shown in
Algorithm 9. We start with a cluster number n and a unit u. We then go through the
k dimensions of the current subspace and look for neighbors on the left and right of
the point to see whether they are dense as well and not part of a cluster yet. If this
is the case, we continue along that avenue. This results in the assignment of units to
cluster n. Once we have found the clusters, we describe them in terms of their ranges
of values (as we previously indicated) and find a minimal way to do so. Agrawal
et al. [4] discuss in detail how this can be done in an efficient way.

After all these steps have been performed we end up with a selection of suitable
subspaces and a description of the clusters in those subspaces.

5.6 Datastream Clustering

Although subspace clustering helps us solve the dimensionality issue, some chal-
lenges and restrictions remain. All of the algorithms we have seen so far make some
strong assumptions [1]:

92 5 Clustering

Algorithm 9: Cluster generation
find_neighbors(u,n) :
cluster(u) = n
for j = 1, . . . , k do

ul = u
ulj(h) = uj(l)

ulj(l) = uj(l) − 1

if dense(ul) ∧ cluster(ul) = unknown then
find_neighbors(ul, n)

end
ur = u
ulj(l) = uj(h)

ulj(h) = uj(h) + 1

if dense(uh) ∧ cluster(uh) = unknown then
find_neighbors(ul, n)

end
end

• They assume that an unlimited amount of data can be stored, such that multiple
passes can be performed, e.g. in the k-means clustering. In our setting of the
quantified self, storing all sensory data in a highly fine-grained manner might
exceed the storing capacity of our mobile devices. A central repository would
be an option, however, imagine Arnold’s accelerometer data with more than 100
samples per second. Uploading this data would take way too much bandwidth.

• Another assumptions is that all data should be treated in the same way. However,
the underlying mechanisms generating the data might evolve over time, requiring
models to become outdated. For instance, Bruce might improve his ability to
control his blood glucose level. This is referred to as temporal locality or concept
drift. Note that this is different from our temporal/non-temporal predictors we have
seen in the previous section.

Within the domain of data stream mining algorithms are being developed that no
longer build on the assumptions above. We will give a few example for clustering
approaches which tackle some of the problems listed earlier. One approach is to
maintain a window of a particular size n and cluster only on the last n elements. Each
new arriving instance then replaces an element in our window (e.g. the oldest) or we
replace elements only with a certain probability less than 1 to avoid having to run
the algorithms repeatedly.

An alternative approach is to store cluster centers for chunks of data and continue
abstracting over these centers when our dataset grows [55]. This might sound a
bit vague, but it is actually pretty straightforward. Imagine that we select the first
m elements in our data. We cluster these m elements by means of k-medoids and
identify k instances as centers. We assign a weight w to each center based on the
number of instances that are part of the cluster. We continue this process with the
next chunk of data of size m until we have done this m

k times. We now have a new

5.6 Datastream Clustering 93

dataset of m centers and their associated weights. We cluster these centers into k
clusters again based on the weights of the medoids we had previously assigned. We
can continue this process for multiple levels, and we only store the medoids, weights
for each level. Hence, we greatly reduce our need for storing lots of data.

Another alternative is to use the mixture of normal models that we have discussed
earlier. For this purpose, you can imagine that part of the data, for example the last
n data points, is used to estimate an initial mixture of normals. This results in a
compressed representation of the n data points in terms of the means and standard
deviations of the mixture components. As new data comes in, the density estimates
are updated. It has been shown that this is a very efficient way to handle data stream
clustering [109].

5.7 Performance Evaluation

Clustering is not as clear cut in terms of performancemetrics compared to supervised
learning approaches which we will discuss in the next three chapters. So how do we
know thatwe have found a good clustering?Well, there are somemetrics that can help
out. We will discuss one of the most prominent examples here, namely the silhouette
score [101]. This cannot only help to evaluate the clustering but also to find good
values for the parameters of various clustering approaches (e.g. k for k-means and
k-medoids). We start by defining the average distance of a point to the other points
in its cluster:

a(xi) =
∑

∀xj∈Cl distance(xi,xj)

|Cl| where xi ∈ Cl (5.32)

In addition, the silhouette score uses the average distance to the points in the cluster
closest by

b(xi) = min∀Cm 	=Cl

∑
∀xj∈Cm distance(xi,xj)

|Cm| where xi ∈ Cl (5.33)

We can now define the silhouette:

silhouette =
∑N

i=1
b(xi)−a(xi)

max(a(xi),b(xi))

N
(5.34)

It compares the distances a(xi) and b(xi) and divides it by the maximum of the two.
Hence, it provides a measure on how tight the clusters themselves are relative to the
distance to the clusters closest to them. The score can range from −1 to 1, where −1
is clearly the worst score one could obtain as apparently the distances from points to

94 5 Clustering

other clusters are lower than those between points within the cluster. The closer to 1
the better it is, since close to 1 represents a low value for the a(xi)’s (tight clustering)
and high values for b(xi)’s (cluster are far apart).

5.8 Case Study

Let us go back to our crowdsignals dataset. While our goal is not explicitly set to
finding interesting clusters, clustering could still contribute to solving our problem
(predict the label or the heart rate): if we can cluster our measurements in such a
way that the membership of a cluster is predictive for the target, it would be a great
contribution, making the presence of an instance in a cluster a new attribute. In
addition, it provides us with insights into our data that will help to make choices in
the next chapters. We will try several of the clustering approaches we have discussed
in this chapter. While we have ample options to choose from in terms of distance
metrics and a learning setup, we take a rather straightforward one. We will use the
Euclidean distance as a distance metric (it is easy to understand, applicable to both
k-means and k-medoids, and fast). For the selection of the learning setup we do not
have much choice: we just have the dataset of a single quantified self. Therefore
we aim to cluster instances in our data instead of selecting the person level. For
the clustering we will focus on the accelerometer of the phone, i.e. the attributes
acc_phone_x, acc_phone_y, and acc_phone_z. Our task is to find clusters that might
be indicative for the type of activity being conducted (though we do not use the label
information to generate the clusters). Of course, this selection of measurements is
a bit arbitrary, but it is a set of measurements that is representative for most of our
measurements.

5.8.1 Non-hierarchical Clustering

First, let us dive into non-hierarchical approaches, namely k-means and k-medoids.

5.8.1.1 K-Means

Given our dataset, we need to figure out the best setting for the number of clusters (k)
first. For this, we run the algorithm with different values for k (ranging from 2 to 9
clusters) andmeasure the silhouette to judge the quality of the clustering. The result is
shown in Fig. 5.8. Note that we only do some exploratory runs with a limited number
of random initializations per setting to get an idea on the best value for k. From the
figure, we can see that a value of k = 6 results in the highest score on the silhouette
and the score is quite reasonable (0.743). Let us visually explore the clusters resulting

5.8 Case Study 95

Fig. 5.8 Silhouette score of
k-means for different values
of k

Fig. 5.9 Visualization of the
clusters found with k-means
with k = 6 (colors) and the
labels (markers)

from this setting. We have illustrated them in Fig. 5.9. We also included the labels in
the figure. Upon inspection we see quite a nice consistent clustering.

When considering the labels, it does seem that labels are not just randomly spread
across the different clusters, for example the yellow cluster seems to contain a lot
of walking label points. Table5.1 shows more statistics about the clusters. We can
see that each cluster has its own “niche” in terms of the different accelerometer
measurements and we also observe the spread of labels across the clusters. For
example, the instances with the phone lying on the table are nearly entirely covered
by the first cluster, while the sitting behavior is caught in the third cluster. Walking,

96 5 Clustering

Table 5.1 Distribution of measurements and labels over for k-mean clustering. Note that the per-
centage for the label indicates the percentage of total rows among which the label has been assigned

Attribute Statistic Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
6

Accelerometer data

acc_phone_x Mean −0.36 8.24 8.00 −0.75 −8.21 −0.56

Std 1.15 0.96 1.02 1.71 0.94 1.21

acc_phone_y Mean 0.98 0.61 −2.35 −9.61 2.25 9.55

Std 1.92 1.36 2.06 1.22 1.94 1.12

acc_phone_z Mean 9.19 4.54 −4.80 0.23 −4.67 −0.56

Std 1.06 1.36 1.08 1.49 1.44 1.62

Labels

labelOnTable Percentage (%) 99.56 0.44 0.00 0.00 0.00 0.00

labelSitting Percentage (%) 2.40 0.40 97.20 0.00 0.00 0.00

labelWashingHands Percentage (%) 7.02 1.75 1.75 56.14 0.00 33.33

labelWalking Percentage (%) 1.87 0.94 0.47 46.14 0.47 50.12

labelStanding Percentage (%) 4.74 1.42 0.00 48.34 0.47 45.02

labelDriving Percentage (%) 1.67 55.56 20.00 0.00 22.22 0.56

labelEating Percentage (%) 2.54 39.59 0.00 0.00 57.36 0.51

labelRunning Percentage (%) 17.43 0.92 17.43 64.22 0.00 0.00

standing, and washing hands seem to occur equally frequent among clusters four and
six. Having said that, we can expect that this clustering should be able to help us
with our tasks.

As a final analysis, we plot the silhouette for the clusters that result per data point,
this gives a nice indication on the quality of the various clusters, see Fig. 5.10. We
see quite a consistent picture across the clusters.

5.8.1.2 K-Medoids

We have applied the k-medoids algorithm to the same problem, and study the same
characteristics. In terms of the silhouette scores over different values for k we see
a similar result as we have found for k-means: k = 6 is best again (Fig. 5.11). The
best silhouette score is 0.742, similar to the one we previously obtained for k-means.
The clusters are also pretty similar and so are the silhouette scores of the individual
points. We therefore only show the table with the statistics, see Table5.2. The table
also does not indicate any significant differences.

5.8 Case Study 97

Fig. 5.10 Silhouette score
of the data points in the
different clusters with k = 6

Table 5.2 Distribution of measurements and labels over clusters for k-medoids clustering. Note
that the percentage for the label indicates the percentage of total rows among which the labels has
been assigned

Attribute Statistic Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
6

Accelerometer data

acc_phone_x Mean −0.31 8.24 7.97 −0.86 −8.21 −0.56

Std 1.06 0.96 1.01 1.62 0.94 1.21

acc_phone_y Mean 1.03 0.59 −2.46 −9.52 2.25 9.55

Std 1.89 1.40 2.25 1.46 1.94 1.12

acc_phone_z Mean 9.26 4.53 −4.76 0.30 −4.67 −0.56

Std 0.87 1.38 1.08 1.54 1.44 1.62

Labels

labelOnTable Percentage (%) 99.56 0.44 0.00 0.00 0.00 0.00

labelSitting Percentage (%) 2.40 0.40 97.20 0.00 0.00 0.00

labelWashingHands Percentage (%) 7.02 1.75 1.75 56.14 0.00 33.33

labelWalking Percentage (%) 1.87 0.94 0.47 46.14 0.47 50.12

labelStanding Percentage (%) 4.74 1.42 0.00 48.34 0.47 45.02

labelDriving Percentage (%) 1.67 55.56 20.00 0.00 22.22 0.56

labelEating Percentage (%) 2.54 39.59 0.00 0.00 57.36 0.51

labelRunning Percentage (%) 8.26 0.92 21.10 69.72 0.00 0.00

98 5 Clustering

5.8.2 Hierarchical Clustering

Finally, we are going to try a form of hierarchical clustering, namely the agglomera-
tive clustering approach. While we no longer need a pre-defined number of clusters,
we can select the number of clusters by choosing a certain point in the dendrogram.
We use the Ward linkage function. Figure5.12 shows the dendrogram for our prob-
lem at hand. When we create clusters, the highest silhouette score we obtain is 0.730
for k = 6.

Based on the silhouette (which hardly differs per approach) we arbitrarily select
the k-means clustering approach to add a feature which represents the attribution of
an instance in the dataset to a cluster.

5.9 Exercises

5.9.1 Pen and Paper

1. We have presented a number of person level distance metrics. While we did not
discuss it explicitly, each one comes with their own pros and cons. Present an
advantage and a disadvantage for each of the metric (hint: think of computational
complexity, the amount of information taken into account, etc.).

2. Let us consider one of the person level distance metrics, namely the dynamic
time warping. As we explained the approach, we tried to find the shortest path to
match up all of our data points. This would be the distance between the attribute
value of two persons. From the literature, it is known that the shortest path is not
always the best option to use as a distance metric. Give an example that supports

Fig. 5.11 Silhouette score
of k-medoids for different
values of k

5.9 Exercises 99

Fig. 5.12 Dendrogram for the crowdsignals dataset. Note that the numbers between brackets at the
bottom of the dendrogram represent the number of instances

this statement. Furthermore, give an alternative dynamic time warping distance
metric that avoids this disadvantage.

3. We have explained the k-mean and k-medoids algorithms. We did not talk about
the guarantees that are provided on the quality of the solution though. Do you
think we are guaranteed to find the optimal clustering in either k-means and
k-medoids clustering? Explain why (not).

4. The literature suggests that it is very hard to use k-means clustering in combination
with some of the person level distance metrics. Which one of the distance metrics
would be hardest to use in combination with k-means? And why?

5. What is the computational complexity of both the k-means and the k-medoids
algorithm?

6. In agglomerative clustering, Ward’s criterion can result in a very different den-
drograms compared to the other criteria such as the single and complete linkage
criteria. What would you expect to be different if you compare the outcomes of
the two approaches? And what could be the reason for this?

7. We have not used a subspace clustering approach in our case study but consider it
to be a very relevant approach for the quantified self domain. Provide a concrete
example (in terms of a dataset with certain features and certain distributions of the
values of those features) where subspace clustering would be a far better choice
compared to the more common clustering approach.

8. We have seen one metric to evaluate the quality of clustering namely the silhou-
ette. Provide at least one additional metric for clustering quality and explain how
it is computed.

100 5 Clustering

5.9.2 Coding

1. We have focused on the phone’s accelerometer data in our clustering, but did not
touch upon the other sensors. Cluster the gyroscope data for the crowdsignals
dataset using k-means, k-medoids, and hierarchical clustering. Do you see a
similar clustering as we have seen for the accelerometer data? And how do the
clusters relate to the activity?

2. Let us move on to your own dataset. Select a few relevant features from your own
dataset and cluster them using one of the clustering approaches. Write down and
illustrate your results.

3. Select either your own dataset, or the crowdsignals dataset. Compare different
criteria for the agglomerative clustering and visualize the differences. Explain
how the criteria influence the clustering and the shapeof the resulting dendrogram.

4. Take the dataset covering multiple persons you have used in previous chapters.
Apply k-medoids clustering with all the different person level distance metrics
that have been discussed in this chapter. Show the results using these metrics and
compare the results of the clustering for each metric.

5. Apply hierarchical clustering to the dataset covering multiple persons. Use only
one person level metric (you can select which one). Compare the outcome to the
k-medoids clustering result with the same person level metric.

Chapter 6
Mathematical Foundations for Supervised
Learning

In this chapter we provide a conceptual and mathematical basis for supervised learn-
ing. The reasons for focusing on supervised learning for this more theoretical chap-
ter are twofold: first, we will mainly use supervised learning methods for analyzing
quantified self data, and, second, understanding the theoretical underpinnings helps
to make the right choices in practical applications and to evaluate results. If you
want to dive deeper into theory after reading this chapter, we recommend to read
the excellent text books by Abu-Mostafa et al. [2], Shalev-Shwartz et al. [105], and
Mohri et al. [87].

We discuss the process and elements of learning and important aspects such as
model evaluation and selection. Finally, wewill summarize themain theoretical ideas
for supervised learning tasks.

6.1 Learning Process and Elements

What dowemeanwhenwe say “machines can learn”? Take one of the examples from
Chap.1: “Predicting the next blood glucose level based on past measurements and
activity levels”. This example immediately shows two main ingredients of learning:
First, a task is described—predicting the blood glucose level. Throughout the book
it is often a predictive model we derive from data. These models can then be used
to inform or automate decisions such as taking a certain dose of insulin or recom-
mending additional activities. Second, historical data, here past measurements on
the temporal evolution of the glucose level and its link to activity, is needed. In our
daily life we often refer to this “data” as experience or examples which we can learn
from.

A third aspect is not immediately obvious from the blood glucose example and
relates to the goal of learning. When we learn something it is not only about memo-
rizing things but, instead, accomplishing tasks better thanwewouldwithout learning.

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_6

101

http://dx.doi.org/10.1007/978-3-319-66308-1_1

102 6 Mathematical Foundations for Supervised Learning

To judge this, it needs a performance measure that tells us how good we are doing
on a task, e.g. the mean absolute error when predicting the blood glucose level based
on recommended activities. Taking these three constituents (task, experience, and
performance measure) we follow Tom Mitchell (1998) in his seminal book [85] and
define machine learning as:

Definition 6.1 A computer program is said to learn from experience E with respect
to some class of tasks T and performance P, if its performance at tasks in T improves
with E.

This definition extends Definition 1.3 from the first chapter in two ways. First,
identifying patterns is not the ultimate objective but an intermediate step towards
achieving a task. Second, we need away to evaluate the performance of learning. This
might be as simple as indicated in Defintion 1.6 where we try to estimate a function
and thusminimize an error, ormore complicated as in the casewhere for evaluating an
action that tries to accomplish task T . Choosing an appropriate performancemeasure
is a very important step in machine learning, because it heavily impacts the learning
behavior of the learning algorithm. At the same time, as you will see, the choice is
not easy and heavily depends on the task itself.

6.1.1 Unknown Target Function

We will now take a closer look on what computers need in order to learn and how
learning is achieved. Let us focus on supervised learning (Definition 1.6). The as-
sumption behind supervised learning is that many real-world phenomena can be
described in terms of a mathematical model. A model simplifies the perspective on a
real-world phenomenon by the abstraction of, and focusing on, its important aspects.
It refers to a functional input/output relationship of observable concepts. Think a
little bit about the model oriented perspective—it is very powerful not only for un-
derstanding real-world phenomena but also for predicting them. Let us see what
this means by reconsidering the blood glucose example. Many factors influencing
the blood glucose level have been studied in detail: So, for example, it is known,
that stress, fat, coffee, and medication cause the glucose level to increase, while
sports and healthy food can decrease it. In addition, the functional relationship will
be specific to individuals as you might expect from our two characters Arnold and
Bruce. Knowing the functional relationship for our two guys enables us to understand
how their individual glucose levels evolve and also to come up with personalized
recommendations for training and food.

Themain ingredient here is the functional relationship that wewould like to learn.
As such,machine learning hasmany similarities with inferential statistics but extends
its capabilities.We call the functional relationship that wewant to learn, the unknown
target function1 f (see Fig. 6.1). It quantitatively represents the model and can be

1In machine learning the terms function and model are often used interchangeably.

http://dx.doi.org/10.1007/978-3-319-66308-1_1
http://dx.doi.org/10.1007/978-3-319-66308-1_1
http://dx.doi.org/10.1007/978-3-319-66308-1_1

6.1 Learning Process and Elements 103

Unknown
target func on

Unknown
condi onal target

distribu on

Noise
distribu on

Observed data

Hypothesis set

Training

Test

Valida on

Error measure

Unknown
input

distribu on

Learning
machine

Learned
model

Model selec on and evalua on

Fig. 6.1 Process and elements of supervised machine learning (based on the learning diagram from
Abu Mostafa et al. 2012 [2])

any type of function f : X → Y that maps the observation x ∈ X to the target y ∈ Y

(note that the argumentation also holds for a categorical target g). Here, X (and Y)
represent the input (and target) space which is the set of all potential observations.2

You can think of the unknown target function as the underlying generator of the data
we observe.

In almost all realistic cases, the data will not be generated by a deterministic target
function. That is because we often have measurement errors on the input side (e.g.
when recording his food intake Bruce unintentionally forgets about the last piece of
cream cake he had for breakfast) but also some noise on the output (e.g. we have
not accounted for all factors that influence the glucose level). These two sources of
noise would need to be dealt with independently, especially in cases of non-linear
relations. However, as usual in machine learning, we will restrict ourself and account
only for noisy targets by introducing what we call the unknown conditional target
distribution p(y|x). If you have not seen the notation p(y|x) (read as the probability
of y given x), do not be scared. It gives the probability distribution of y assuming that
x is fixed. So, instead of having a deterministic function, we take an input value x ,
calculate f (x), and then add some noise that is generated from a noise distribution.
When the target is discrete the noise distribution can be the Bernoulli or categorical

2For reasons of simplicity, we drop the index j of observations (x j , y j) in the following paragraphs.

104 6 Mathematical Foundations for Supervised Learning

distribution. In case of a numerical target as in the case of the glucose level it will
be a continuous probability distribution such as the normal distribution. As you can
imagine, accounting for random noise makes it more tricky (at least approximately)
to learn the target function but that is what realistic datasets are like as we have seen
for the quantified self in Chap.3.

There is one piece missing to “generate” the observed data, which is the unknown
input distribution p(x)—as you might expect it tells us how the observations are
distributed. We will see later in this section why it is important to conceptually have
p(x) as a building block of our learning setup even thoughwe do not need to explicitly
know it. Note, that we could now determine the joint distribution p(x, y), since
p(x, y) = p(y|x) p(x) holds by definition of conditional probabilities. However, in
machine learning we are typically interested in learning p(y|x). The reason is that
we want to predict a target value y for a given observation x .

6.1.2 Observed Data

p(x) and p(y|x) represent the generating mechanism behind the phenomenon we
study. However, the only thing we can get hold of is the observed dataset O =
{(x j , y j)| j = 1, ..., N }which helps us to learn about the unknown target distribution
p(y|x). Thus, the observed data can be interpreted as a blurry filter through which
we see the theoretical model.

Depending on the learning algorithm we split the observed data in two or three
subsets. The first subset is called the training dataset. It is the main piece of data used
to learn which function f̂ (x) fits the observed data best. Depending on the amount
of data we are given the fraction of the overall dataset that constitutes the training
dataset varies.When data is limited, as it is often the case in psychological or medical
research, around two third of the overall dataset is used for training purposes. When
there is plenty of observed data available another aspect becomes important. Assume
you have a binary classification problem at hand (e.g. want to predict a critical state
of the blood glucose level): Very often, the number of observations belonging to
one of the two classes is heavily skewed. We say the dataset is unbalanced. If we
would present this to our learning algorithms the learned target distribution would
put a strong weight on the dominant class in the data. In fact, it might achieve a very
good performance by doing so. However, we would be interested in predicting the
underrepresented class in a good way as well. For instance, if we want to predict
a rare disease we are most interested in a model that is able to identify the people
that might have or develop the disease. In this case, to facilitate learning, the training
data is designed to be a stratified sample of the overall observed data. That means,
training examples are chosen from the observed data in a way that both class labels
are equally likely,which then directs the optimization algorithm to paymore attention
to the underrepresented class.

http://dx.doi.org/10.1007/978-3-319-66308-1_3

6.1 Learning Process and Elements 105

Once the best fitting function is found, the test dataset (our second subset) helps
to evaluate whether f̂ (x) is also a good fit in a sense that it generalizes well—that
is, calculating the target value for unseen data based on f̂ (x) will produce good
predictions (what “good” means depends on how and what for f̂ (x) is used in
practice; this issue will be discussed in more detail in Sect. 6.1.5). It is important that
the test dataset is kept separate from the learning process and is only used to assess
its generalizability.

In supervised learning we always have a training and a test dataset. In addition to
that some model types (e.g. decision trees) use a validation dataset that advises the
learning process when to stop. This can also help to tune the parameter values of the
learning algorithms. We will explore this in more detail when discussing decision
trees (Sect. 7.5) but you can think of the validation data as being used to set a stopping
criteria for learning and thus to avoid overfitting (see Sect. 6.2).

For a small dataset we have to use the limited data in the best possible way. One
approach is to use cross validation: we split our data into k chunks (without any
overlap in the folds), use k − 1 chunks to train on, and one chunk to test upon. We
have k different configurations for the training and the test set then. This is called
k-fold cross validation. We average the performance over these k configurations. We
fully use the data in such a case, but never train on data we test upon.

6.1.3 Error Measure

We know that in general we are not able to infer the exact target function f . This is
due to the noisy target distribution and the finite amount of observed data available
for learning. To understand how far apart a candidate function h is from the unknown
target function f we need an error measure E(f, h) that takes the two function as
arguments and returns a real value. To make this operational let us use a point-wise
error e(f (x), h(x)), that is a distance measure between the two values f (x) and
h(x). Based on that we define E(f, h) to be the expected value of e(f (x), h(x))
given p(x).

E(f, h) =
∫

X

e(f (x), h(x))p(x)dx (6.1)

In the more theoretically oriented literature (e.g. [121]) e(f (x), h(x)) is called loss
and E(f, h) is called risk or risk functional.

Now that we have defined a general error measure, can we calculate it easily?
As you probably have already realized, the answer is “no” for any realistic learning
problem. Why? In order to calculate E(f, h) we would not only need to know h(x)
at every point in the input space but also f (x). However, if we could determine f (x)
at any point, it would not be unknown anymore and there would not be anything to
learn. So what can we do instead? We approximate E(f, h) as follows:

http://dx.doi.org/10.1007/978-3-319-66308-1_7

106 6 Mathematical Foundations for Supervised Learning

E(f, h) ≈ 1

N

N∑
j=1

e(y j , h(x j)) (6.2)

The term on the right hand side is called empirical risk and plays an important
role, when it comes to learning h(x). We will see later in this chapter that this
approximation can be reasonably good but also go utterly wrong if we are not careful
when choosing the hypothesis set. For now, let us consider a classification problem
and see what Eq.6.2 looks like. One of the obvious error measures is the rate of
correct classification, that is the fraction of cases we correctly classify using our
learned model:

classification rate = |{g j ∈ G|ĝ j = g j }|
N

(6.3)

We can also be a bit more precise to see where wemakemistakes. Consider Table6.1,
also known as a confusion matrix, and let us assume we have a binary classification
problem (i.e. we need to predict 0 or 1). In the table, the columns represent the
predictions of the model (ĝ j), and the rows are the actual values (g j). We see that
we can be correct in two ways: we predict a positive case (i.e. a 1) correctly (a true
positive) or we predict a negative case right (a true negative). Furthermore, if we
make a mistake where we predict a positive but it is actually a negative we refer to
it as a false positive. Similarly we have the concept of a false negative.

Based on these concepts, we can define additional measurements, such as the
precision and recall. The precision represents how correct we are when we predict
a 1 with our model (precision = T P

T P+FP). The recall measures how many of the
positive cases we identify based on our model (recall = T P

T P+FN).
Ideally, we would like to perform well on both precision and recall. Therefore,

the so-called F-measure that combines the two has been developed:

Fβ = (1 + β2) · precision · recall
β2 · precision + recall

(6.4)

The parameter β expresses how the precision and recall are weighted. It attaches β

times as much importance on recall compared to precision.
We will see in the next section how the regression case can be handled in terms

of error measures. But before doing so, we want to combine what we have learned

Table 6.1 Confusion matrix

Actual Predicted

1 0

1 True positive (TP) = {g j∈G|ĝ j=g j∧ĝ j=1}
N False negative (FN)

{g j∈G|ĝ j �=g j∧g j=1}
N

0 False (FP)
{g j∈G|ĝ j �=g j∧g j=0}

N True negative (TN) =
{g j∈G|ĝ j=g j∧ĝ j=0}

N

6.1 Learning Process and Elements 107

about the various subsets of observed data and the error measures. In practice you
will find two terms being used often: in-sample error and out-of-sample error. The
concept behind is as simple as it is important. The term “sample” refers to the chunk
of observed data we called training data. Based on Eq.6.2 the in-sample error is
defined as:

Ein(h) = 1

N

∑
(x,y)∈OTrain

e(y, h(x)) (6.5)

Compared to Eq.6.2 we dropped the reference to the unknown target function f
since we use the observed data instead. Thus, the in-sample error Ein(h) is the
empirical risk calculated for the training data. It is an import measure that will steer
the learning process in Sect. 6.1.4. You already guess what the out-of-sample error
refers to: Strictly speaking we define it as

Eout (h) =
∫

X\OTrain

e(f (x), h(x))p(x)dx (6.6)

Eout (h) tells us how well the hypothesis h(x) is doing on the full input space (ac-
counting for p(x)) except for the training data. Note that for all practical cases, due
to the finiteness of OTrain we have Eout (h) = E(f, h). As we will discuss in more
detail, learning is about minimizing Eout (h)without knowing it exactly. Again, if we
could exactly determine Eout (h) we would need to know f (x) which would mean
that we do not have anything to learn. Therefore we will take Ein(h) as a proxy for
Eout (h) in the next section.

We would like to conclude this section by emphasizing how important it is to
choose an appropriate error measure. That is because the error measure strongly
impacts the outcome and feasibility of learning. In practice the choice of the error
measure depends on the intended use of the model that shall be learned. For example,
thinking of our friendBruce, wemight especially be interested to predict extreme low
or high values of the blood glucose level with the highest possible precision, while we
do not care to be very exact in the mid range. Often, in a first step, a computationally
convenient error measure is chosen (e.g. mean squared error, classification rate) and
then in a second step adjusted to the needs of a practical application (see Sect. 6.1.5).

6.1.4 Hypothesis Set and the Learning Machine

We now focus on another element in Fig. 6.1: the hypothesis setH which is a set of
functions that contains all potential hypothesis h we consider to be candidates to fit
the unknown target function well. Very often H is an infinite set of functions. For
example, in regression this could be the (simple yet infinite) set of all linear functions
on the input space X.

108 6 Mathematical Foundations for Supervised Learning

Thus, learning comes down to the task of selecting the hypothesis h ∈ H that best
matches the observed data—we call this hypothesis f̂ . You might think that this is
a very restrictive approach to learning because we need to have a “good” candidate
in our hypothesis set, and in a sense you are right. However, keep in mind, that we
could chooseH to be as flexible as we wish to, that is we can add whatever class of
function we believe might be appropriate. But adding flexibility comes at a price, it
makes the selection of f̂ harder, since you have more to choose from with the same
amount of observed data. In fact, as discussed for example by Mitchell [85], without
restricting the hypothesis space, learning as a selection of a f̂ fromH is not possible.

We have everything in place (in particular concepts such as observed data, error
measure, and hypothesis set) to tackle the actual learning as represented by the learn-
ing machine in Fig. 6.1. We said that learning is the task of selecting the hypothesis
h ∈ H that best matches the observed data. What we mean by best is, that we choose
h so that it minimizes the in-sample error

f̂ = argmin
h∈H

Ein(h) (6.7)

So, behind the learning machine is an optimizer that tries to solve the above problem.
Since we assume you are familiar with linear regression from an introductory class
on statistics we take it as an example here: What is the hypothesis set in the linear
regression case? We define an individual hypothesis as follows:

hθ (x j) = θ0 +
p∑

k=1

θk x
k
j = θT x j (6.8)

where θ is the unknown vector of parameters and θk are its components (the subscript
of hθ (x j) denotes the dependency on θ). Note that the vector θ has a length of p+ 1
(the subscript runs from 0 to p), while an observation x j as defined in Eq.3.1 only
has length p. A common trick is to extend the x j by adding a constant 0-th element
x0j = 1 that links to θ0 which in linear regression is called the intercept.

What are we missing? In order to minimize the in-sample error, we need to fix the
point-wise error.A convenient choice is e(y, h(x)) = (y−h(x))2 which leads towhat
you probably already know as the least-mean-square solution in linear regression.
Applying Eq.6.5 to our specific settings and the full set of observed data leads to

Ein(h) = 1

N

N∑
j=1

(y j − θT x j)
2 = 1

N
(Y − θTX)T (Y − θTX) (6.9)

What does the in-sample error look like? To get a graphical intuition let us assume
that the input space is 1-dimensional and the true (and unknown) parameters that
generated the data are θTrue = (3, 2.5) and N = 200. As you can see in Fig. 6.2 the
in-sample error is a quadratic function that only has oneminimum. It is thisminimum,
referred to as θ̂ corresponding to f̂ , we are looking for. If you are familiar with linear

http://dx.doi.org/10.1007/978-3-319-66308-1_3

6.1 Learning Process and Elements 109

Fig. 6.2 Ein(h) is the
in-sample error calculated at
θ given the observed data

regression you might remember that, under the condition XTX is invertible, there is
a closed form solution

θ̂ = (XTX)−1XTY (6.10)

To minimize the in-sample error we can also use an algorithm that is often used
in machine learning: gradient descent. The story behind it is simple: Assume you
virtually jump into Fig. 6.2 at an arbitrary position, say θ0 = θ1 = 0, and then go
down-hill step by step. Eventually, youwill arrive at θ̂ which represents theminimum
of the in-sample error. So, (machine) learning is like white water rafting and not as
is often said “swimming upstream”.

How can we technically implement gradient descent? The gradient of a multi-
parameter real-valued function is the vector of the partial derivatives of that function.
It points into the direction of the steepest ascent (see left panel in Fig. 6.3). If we
want to determine the next step, we can apply the following rule:

θk = θk − η
∂

∂θk
Ein(h) (6.11)

where η is the so-called learning rate that determines whether and how fast the
gradient descent algorithm converges. It is not too hard to show (see exercise) that
the update rule can be formulated in a vectorized notation:

θ = θ − η∇θ Ein(h) = θ − η

N
XT (Xθ − Y) (6.12)

where ∇θ is the so-called nabla operator that calculates the gradient of the function
it is applied to.

110 6 Mathematical Foundations for Supervised Learning

Fig. 6.3 Left panel shows the gradient field, right panel shows gradient descent for the same data

Equation6.12 is often referred to as the Widrow-Hoff algorithm. It makes in-
tuitively sense that it contains a term (Xθ − Y) representing the deviation of the
hypothesis hθ (x) from the observed Y. The larger this difference is, the faster we
go down-hill. We implement the Widrow-Hoff algorithm or, as it is also called, the
“least-mean-square (LMS)” training rule. The step-wise gradient descent is shown
in the right panel of Fig. 6.3. The implemented version of the algorithm is called
batch gradient descent because all training examples are used at the same time.
There are other variants of the gradient descent algorithm that update θ by using
individual training examples separately (stochastic gradient descent) that are useful
in situations where new data comes in.

We startedwith the closed form solution of the linear regression case. Compared to
the Widrow-Hoff algorithm it looks much simpler and more elegant. However, there
are two main reasons why the iterative approach is very powerful. First, Eq. 6.10
involves calculating the inverse of XTX which can be computationally expensive
given its size (p+1)2 for complex problems. In contrast, theWidrow-Hoff algorithm
does not need to calculate the inverse but only needs matrix multiplications. Second,
the closed form solution is closely coupled to the mean squared error we used for
the point-wise error e(y, h(x)). When we need to change the point-wise error, in
most cases there will not be a closed form solution anymore. On the other side,
the pre-condition for applying gradient descent is only that the point-wise error is
differentiable. When discussing neural networks we will see that this will help to
find solutions.

To conclude this section, we want to emphasize two important aspects: First, this
section touches the core of machine learning since it demonstrates howmachines can
learn in the sense of picking the best hypothesis from an infinite set of hypotheses.
In Chap.7 we will see other learning algorithms such as the perceptron learning rule.
However, the basic idea of minimizing Ein(h) will stay.

Second, learning requires to choose a specific (and limited) hypothesis set before
running the learning algorithm. If, instead, we would define the hypothesis set to be
the set of all functions that maps X to Y the learning process described above would

http://dx.doi.org/10.1007/978-3-319-66308-1_7

6.1 Learning Process and Elements 111

not work. For sure, it would be easy to find many functions that minimize Ein(h). In
fact you can construct an infinite number of functions, that yield Ein(h) = 0. But,
in general, they would overfit the unknown target function. We will discuss this in
more detail in Sect. 6.2.

6.1.5 Model Selection and Evaluation

This section is concernedwith two questions: First, how canwe select the best model,
that is, finding the model which will perform best in a given task—e.g. predicting
Bruce’s mood this evening? Second, how can we assess the quality of a model we
have learned—e.g. how often will we be right when predicting Bruce’s mood in the
future?

In Sect. 6.1.4 we have shown that minimizing Ein(h) is the way how machines
learn. As a result of this optimization task we are left with one function f̂ that is
supposed to approximate the unknown target function. Having said that, the first
question we posed at the beginning of this section seems a bit odd—we have one f̂ ,
so there is not too much of a choice, right? In the following we will discuss three
cases where model selection is yet an issue.

Let us have a closer look at binary classification problems. Instead of taking linear
combinations of all input variables as our hypothesis set as in the regression case
(Eq.6.8) we define our hypothesis set as:

hθ (x j) =
{
1, ifΘcut < (1 + e−θT x j)−1

0, otherwise.
(6.13)

where Θcut is a threshold parameter that determines how restrictive the hypothesis
hθ (x j) acts when allocating a sample to class 1. Depending on the error measure,
that we have not defined so far, we could apply the methodology of the previous
chapter to estimate the parameters θ and Θcut simultaneously. On the other hand, as
you might have realized, Eq. 6.13 represents the well-known logistic regression and
parameters θ can be learned usingMaximumLikelihood. This is done by interpreting
(1+e−θT x j)−1 as the probability that x j belongs to class 1 (see also the exercise about
this). Hence, we might want to select Θcut after this learning process.

Now, assuming that we want to classify an unseen x , we would get a scalar value
0 ≤ θT x ≤ 1 that we could interpret as a probability. Depending on Θcut we can
predict to which class x belongs most likely. If we vary Θcut we obtain the so-called
Receiver Operating Characteristic (ROC for short) curve (Fig. 6.4).

The ROC curve shows the trade-off between the fraction of true positives that
are found out of the total number of positives versus the fraction of false positives
that were found among the total number of negatives. In Fig. 6.4, the dashed line
represents a random classifier while the solid line is an example performance of
a better classifier. Ultimately we would like the curve to go straight to the upper

112 6 Mathematical Foundations for Supervised Learning

Fig. 6.4 Left panel shows the ROC curve, right panel displays the dependency of costs associated
with using the classification model

left corner: this would mean that we are able to identify all positive cases without
misclassifying a single actual negative case as positive. The measure of performance
used with respect to the ROC curve is often the Area Under the ROC curve. A value
of 0.5 equals random while a value of 1 (i.e. the line all the way to the upper left
corner that was discussed) is optimal.

Model selection for the above situation means choosing an appropriateΘcut . How
do we do that? Let us turn to Bruce’s blood glucose level again and assume that we
are interested in predicting whether it is within a healthy range or not. We want to
use these predictions to come up with recommendations for Bruce: if the level is
out of range, Bruce is asked to “check his blood sugar”, otherwise “no action is
required”. The prediction and derived recommendation can be wrong in two ways:
First, the glucose level might be ok, but our model suggests that is not. In this case,
Bruce would be asked to check his blood sugar and could relax after the false alarm.
The effort and costs for the (un-needed) test are reasonably low. Second, the glucose
level is out of range, but our model does not recognize it. Bruce might run into a
life threatening situation which we could have prevented, if our model would have
been right. It is obvious that mistakes of the second type are much more harmful, so
we would like to avoid them even though we might make more mistakes of the first
type.

The ratio of mistakes is influenced by Θcut . As we vary Θcut the numbers in
Table6.1 and thus the position on the ROC curve change (left panel Fig. 6.4). In
order to determine the optimal Θcut we can use this dependency. To do so, we have
to quantify the cost or effort associated with the four fields in Table6.1, which in
practice can be very tricky (e.g. what is cost of “life threatening”?). Oncewe are given
the “cost matrix” corresponding to Table6.1 we can calculate the expected cost for
applying the classification model. The right panel of Fig. 6.4 shows that an optimal
Θcut can be picked. Having now both, an optimal θ and Θcut , we have selected the
best performing model.

6.1 Learning Process and Elements 113

We said at the beginning of this section that we want to explore three different
cases in which model selection plays a role, the first was covered in the previous
paragraphs, let us look at another common situation which requires model selection:
Today, we are often faced with large amounts of data where large refers not only to
the number of samples but also the available attributes we can use for learning. As
we have seen in Sect. 4.3 when analyzing texts we quickly have to deal with high-
dimensional input spaces—think of a word as defining a dimension. However, high
dimensionality can also occur, when dealing with seemingly low dimensional data
as for example a sequence from an accelerometer sensor. How so? Instead of taking
the raw data from the sensor as input for machine learning, we have seen that the raw
data is aggregated on different time scales and other measures such as periodicity
are used as input. This can be done in an infinite number of ways.

So, we might end up with having millions of features we could use for learning.
What happens if we apply the empirical risk minimization approach from Sect. 6.1.4
to a situationwhere p > N (see exercise to explore this inmore detail)? As youmight
remember from linear regression there is no single best solution (since XTX is not
invertible). It was the Russian mathematician Andrey Tikhonov who recognized that
a unique solution exists when instead of taking the empirical risk only (remember that
is what we also called the in-sample error Ein(h)) we add a penalization term to the
empirical risk and minimize the sum of both. This approach is called regularization
and we will learn more about it in Sect. 7.9.2. For now, we only need to know that
there is a positive regularization parameter λ that governs how many features will be
included in the regression. To determine the optimal λ that (presumably) minimizes
Eout (h)we learn a set ofmodels h by varying λ.Whichmodel dowe ultimately select
from this set to be our optimal model?While the learning in the previous step is done
using only the training data, we now calculate for each model the corresponding
Ein(h) on the validation data. The model that has the lowest in-sample error on the
validation data gets selected as our best model.

Let us consider the third case where model selection is necessary. So far, we have
assumed to have a fixed hypothesis setH. In practice thatmight be true and youmight
have some prior knowledge that determines H. However, in most cases H cannot
be derived from first principles. For example, we might not only consider linear
combinations of all features as H but also high order polynomials. Let Hd denote
the set of multivariable polynomial of degree d, then we know that H1 ⊂ H2 ⊂
H3 Therefore, with increasing degree d the hypothesis sets get more powerful
in capturing complex relations of the model which translates into a decreasing in-
sample error. As a direct result the following inequalities hold

min
h∈H1

Ein(h) ≥ min
h∈H2

Ein(h) ≥ min
h∈H3

Ein(h) . . . (6.14)

In fact, no later than d ≥ N − 1 the in-sample error will be 0, we refer to this
situation as overfitting. The term overfitting comes from the fact that we perfectly fit
our training data, while the out-of-sample error is very likely to even increase.

http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_7

114 6 Mathematical Foundations for Supervised Learning

How can we avoid overfitting? We apply the same procedure as before: For each
hypothesis setHd we minimize the in-sample error with respect to the training data
and obtain the best fitting model hd . For each hd we then calculate the in-sample
error with respect to the validation data. Ultimately, we choose hd with smallest error
in the validation data as our best model, thereby finding the best overall model.

Up to this point we have not touched the test data, neither for the training nor
the model selection. Therefore we can now evaluate our model by taking its in-
sample error on the test data as a proxy for the out-of-sample error. It cannot be
overemphasized how important this strict separation of the test data from training
or validation data is, only then will the assessment of the out-of-sample error be
reliable.

6.2 Learning Theory

In the previous section we studied the learning process and its elements. The question
we are concerned with in this section is: is it guaranteed that machines can learn as
discussed above? The answer of Radio Yerevan would probably be: “In principle,
yes, but ...”. To elaborate this answer, we present in this section the main ideas of the
underlying theory without going into the mathematical details. Our goal is to provide
a conceptual underpinning for choosing the right hypothesis set and evaluating the
learning results. You might find it tricky to understand every step in this section, if
you do not have some working knowledge in probability theory. In this case, try to
follow the basic flow of arguments.

6.2.1 PAC Learnability

Let us rephrase and sharpen the initial question of this section: Can machines always
learn the unknown target function?Wehave seen in the previous section that we need
lots of training examples to be able to approximate the unknown target function f
well. The question is: Will we ultimately succeed in approximating the f arbitrarily
well, when the number of training samples increase (N → ∞)? Perhaps surprising,
but given the setting in the previous section, the answer is in most cases No! This is
because an obvious prerequisite, i.e. f ∈ H, is typically not guaranteed in practical
applications. Therefore, no amount of training examples will be sufficient to nail
down f .

So, let us try to address the initial question of this section differently. We say
learning is possible, if the in-sample error is a good estimator for the out-of-sample
error: the in-sample error might be and in all relevant cases is not 0. However, with
increasing N the difference |Eout (f̂) − Ein(f̂)| will be most likely very small. Why
“most likely”? There is always the chance that the random training examples are

6.2 Learning Theory 115

drawn from p(x, y) in a way that the above difference of errors is large. This is
captured in the following definition:

Definition 6.2 Ahypothesis set is said to bePAC learnable (probably approximately
correct), if a learning algorithm exists that fulfills the following condition: For every
ε > 0 and δ ∈ (0, 1) there is an m ∈ N, so that for a random training sample
with length larger than m, the following inequality holds with probability 1 − δ:
|Eout (f̂) − Ein(f̂)| < ε

Admittedly, this definition looks a bit complicated. Basically we call a hypothesis
set PAC learnable, if given enough training examples we can approximate the out-
of-sample error arbitrarily well by the in-sample error. The statement comes with
a probabilistic caveat (due to the above mentioned random nature of the sampling
process), it only holds with a certain probability 1−δ > 0. However, this probability
can be chosen to be arbitrarily small.

Let us consider a very simple hypothesisH1 set that only consists of one function
h and we are given N training samples. A learning algorithm would for sure output
h (because it is the only element in H1). Using the famous Hoeffding’s inequality
we have

p(|Eout (h) − Ein(h)| > ε) ≤ 2e−2ε2N (6.15)

That means with increasing N the difference between in- and out-of-sample error
will most likely become arbitrarily small (corresponding to whatever we set ε to
be). Setting δ = 2e−2ε2N , we therefore conclude that this simple hypothesis set is
PAC learnable as defined in Definition 6.2. Since H1 is neither a very exciting nor
realistic case, we move on to a more complex hypothesis set.

We assume that another hypothesis setHM contains a finite numberM of hypothe-
ses. Now for every h ∈ HM the Eq.6.15 holds. However, the learning algorithm will
finally pick only one hypothesis f̂ that is supposed to minimize the error measure.
Therefore if we want to extend Eq.6.15 to the larger hypothesis set HM and bound
the error difference for f̂ , we have to account for the number of choices. Using the
union bound we get

p(|Eout (f̂) − Ein(f̂)| > ε) ≤ 2Me−2ε2N (6.16)

Note that the subtle difference to 6.15 is that the right hand side of the inequality is
by a factor of M larger—that is exactly what the union bound says. Even though this
bound is less good than Eq.6.15, we see that the preconditions of Definition 6.2 are
still fulfilled and thus, that every finite hypothesis set is PAC learnable. Equation6.16
can be rewritten

Eout (f̂) ≤ Ein(f̂) +
√

1

2N
log

2M

δ
(6.17)

116 6 Mathematical Foundations for Supervised Learning

which holds with probability 1 − δ. The fact that every finite hypothesis set is PAC
learnable is already a very powerful result, even though most hypothesis sets used
in practice are not finite. Why? Take for example the set of all linear functions for a
given number of features. Since we could arbitrarily choose parameters θk in Eq.6.8
this hypothesis set for sure contains an infinite number of hypotheses. However, we
can construct a new hypothesis set for which all θk are bounded and discretized. This
yields a hypothesis set that is finite while being similar to the initial set, depending on
the granularity of discretization. Thus, using Eq.6.16 we know that this discretized
hypothesis set is PAC learnable.

6.2.2 VC-Dimension and VC-Bound

We have seen that finiteness of the hypothesis set is a sufficient condition that it is
PAC learnable. In this section we demonstrate that there are also infinite hypothesis
sets that are PAC learnable.We start with an example: Assume you have a binary clas-
sification problem and only one real-valued input variable x . Your infinite hypothesis
setHstep shall consist of all step functions

hθ (x) =
{
1 x ≤ θ

0 otherwise
(6.18)

Let the unknown target function be one of the above step functions with an unknown
θtrue and no noise. Thus, what we want to learn is the unknown θtrue. By intuition you
can imagine, that themore random training exampleswehave, the higher is the chance
to get close to θtrue. If θlearn is the output of our learning algorithm, |θlearn − θtrue|
determines the out-of-sample error. Therefore depending on the number of training
examples we can get as close as we want to θtrue. Thus, given Definition 6.2 the
hypothesis setHstep is PAC learnable, even though it is infinite.

To generalize this result to other infinite hypothesis sets we want to better un-
derstand the expressive power or complexity of a hypothesis set. By the expressive
power of a hypothesis set we mean its ability to correctly represent the training ex-
amples. Let us focus on a binary classification problem and define a restriction of a
hypothesis setH to a finite set of input vectors X as follows [105]

Definition 6.3 Let the hypothesis setH be a set of functions h : X → {0, 1}. For a set
of input vectors X = {x1, x2, . . . , xN }, we callHX = {(h(x1), . . . , h(xN)) : h ∈ H}
a restriction of H on X .

An element of HX is build by taking a function h ∈ H and applying it to all N
vectors in X . This yields a vector of length N whose elements are 0’s and 1’s Thus,
HX contains a number of such length N vectors. Since there are no more than 2N

such vectors, the size ofHX can maximally be 2N . However, the size ofHX is often
smaller than 2N , because various h produce the same 0/1-vector. If the size ofHX is

6.2 Learning Theory 117

2N , we say H shatters X , i.e. H can realize every possible labeling of the N input
vectors. Based on that we define:

Definition 6.4 The Vapnik-Chervonenkis (VC) dimension dVC of a hypothesis set
H is the maximum number of input vectors that can be shattered. The VC dimension
is infinite if there are arbitrarily large sets of input vectors that can be shattered.

Note that the VC dimension of a hypothesis set dVC does not impose that any
set of input vectors that has size dVC can be shattered. Instead, the definition only
requires the existence of at least one set of dVC input vectors that can be shattered.

We admit that this might sound a bit complicated, so let us look at an example:
Assume the input space X is R2 and the hypothesis set H encompass all affine
functions in R2, this is all straight lines. In Fig. 6.5 you see a set of three points in
R2. It is possible to find 8 different hypotheses (straight lines) that separate the three
points in every of the 23 ways. Can we shatter every set of three points by H? No,
think of three points sitting on a straight line. Nevertheless, we have found a set of
three points that can be shattered by H, so we know by definition that dVC ≥ 3.

Can we choose 4 points in a way that they all can be shattered by H? As an
exercise convince yourself that this is not possible. Therefore we know that dVC < 4
and thus dVC = 3.

What can we use the VC dimension for? Being able to shatter a large number of
points inX and thus having a high VC dimension dVC corresponds to a characteristic
of a hypothesis set that we call complexity. The higher the complexity of a hypothesis
set, the better we are able to model training examples.

Given a hypothesis set H with an infinite VC dimension and a fixed set of N
training examples it is likely that there is a hypothesis f̂ ∈ H that perfectly fits the
N training examples. By a perfect fit we mean that the in-sample error Ein(f̂) = 0.
How would you expect f̂ to perform when predicting the labels for the test set? Very
likely, it will not do a very good job leading to a high out-of-sample error Eout (f̂).

Fig. 6.5 The points represent three input vectors (in both figures identical) and the colors their
categories as separated by two example hypothesis h1 and h2

118 6 Mathematical Foundations for Supervised Learning

Thus, for a hypothesis set with an infinite VC dimension Ein(f̂) is never a good
estimator for Eout (f̂) and therefore this hypothesis set is not PAC learnable.

The major result from the seminal work of Vapnik and Chervonenkis [122] is that
all hypothesis sets with finite VC dimensions are PAC learnable and it can be shown
that

Eout (f̂) ≤ Ein(f̂) +
√

8

N
log

4mH(2N)

N
(6.19)

where mH(N) is called the growth function that is a measure for the maximum
number of elements of all possible restrictions HX . Equation6.19 is called the VC
generalization bound. It says, that Eout (f̂) is close to Ein(f̂), if and only if the term
under the square root approaches zero asymptotically. With increasing N the latter
only happens if mH(N) does not grow exponentially. In fact, it can be shown that
whenever a hypothesis set has a finite VC dimension, the growth function can be
bound by a polynomial of order dVC . You can convince yourself that in this case
the square root term in Eq.6.19 approaches zero, the reason being that logmH(2N)

growth slower than N if mH(2N) is polynomial.

6.2.3 Implications

The ideas and insights from the previous section are not only of theoretical interest
but can help us when choosing an appropriate hypothesis set. Let us take a closer
look at the dependency of Ein(f̂) on the number of training examples. With only
a few training examples we often can find f̂ with Ein(f̂) = 0. With increasing
N it is not possible anymore to pick f̂ such that Ein(f̂) = 0. Instead Ein(f̂) will
converge to a maximum (Fig. 6.6). Note, that when additional examples are used for

Fig. 6.6 Dependency of in-sample and out-of-sample errors on the number of training examples

6.2 Learning Theory 119

Er
ro

r
Eout(h)

Ein(h)

Optimal complexity
to minimize Eout(h)

Complexity of Hypothesis Set

Fig. 6.7 Dependency of in-sample and out-of-sample errors on the complexity of the hypothesis
set

training purposes, f̂ is likely to change. It is this change of f̂ with increasing N that
comes with a decreasing Eout (f̂). As a result and on average, Eout (f̂) converges to
Ein(f̂)—this is exactly what PAC learnability is all about.

Based on Eq.6.19 learning, in the sense of achieving a minimum Eout (f̂), can be
interpreted as pursuing two objectives. First, we want to minimize Ein(f̂). Second,
we need to make sure that the square root term in the inequality is small. As you
might have realized these are two competing objectives that have to be balanced. If
we fix N , which it is in practice (this is, you have a limited amount of training data),
we can study the dependency of in- and out-of-sample errors on the complexity of
H. While Ein(f̂) decreases with increasing complexity ofH, Fig. 6.7 demonstrates
that there is an optimal complexity of H that minimizes Eout (f̂).

The mechanism behind it is that, if we choose the complexity of H to be too
low we are not able to capture the complexity of the underlying data well. This
situation is referred to as underfitting (bias of the model). On the other hand, if we
choose a very complex hypothesis set, we are able to capture the complexity of the
underlying data. However, we would need a lot of training data to pick the best
suited hypothesis f̂ with respect to our goal to minimize Eout (f̂) (variance of the
data). Since training data is limited, picking f̂ becomes a lucky shot. This situation
is called overfitting. Choosing the appropriate complexity of the hypothesis set is
called Bias-Variance-Tradeoff.

The trade-off becomes obvious in Fig. 6.8. When there is only little data, the
complexity of H (measured by its VC dimension) should be chosen to be low,
because the E (low)

out (f̂) is expected to be smaller than E (high)
out (f̂). If more training

data is available, it becomes beneficial to use a more complexH as demonstrated by
the lower E (high)

out (f̂). As a rule of thumb the number of training examples N should
be at least 10 times higher than the VC dimension of the hypothesis set used for
training purposes.

120 6 Mathematical Foundations for Supervised Learning

Fig. 6.8 Dependency of in-sample and out-of-sample errors on the number of training examples
for two complexity levels of the hypothesis set

6.3 Exercises

6.3.1 Pen and Paper

1. In Sect. 6.1.2 we briefly discussed the potential discrepancy between “best fitting
function” and “good function”. Given the discussion in Sect. 6.1.5 how would
you interpret this difference?

2. In Sect. 6.1.1 we mentioned that f can be thought of as the generator of observed
data. Discuss this statement and the perspective on real world phenomena behind
it.

3. Why is Eout (h) = E(f, h) (see Eq.6.6 for the definition of Eout (h))? In which
cases does the equation break?

4. Take the solution for linear regression θ̂ = (XT X)−1XTY and determine the
dimensionality of the involved matrices and vectors.

5. We stated that ∇θ Ein(h) = XT (Xθ−Y)

N . Now it is your turn to prove this equation.
(Hint: it is tricky and needs some vector calculus. A good idea is to start with one
training example and then extend the number of observations)

6. Show that applying themaximum likelihoodmethod to logistic regression reduces
to the task of minimizing

Ein(hθ) =
N∑
j=1

(y j − 1)log(1 − θT x j) − y j log(θ
T x j)

7. Explain in detail how each value of Θcut is associated with a certain point in the
ROC curve (Fig. 6.4). What if the minimum of the cost estimate lies at eitherΘcut

0 or 1?

6.3 Exercises 121

6.3.2 Coding

1. Assume you have a linear model that generates data and you have N < p ob-
served examples. As you probably know, finding θ̂ is an ill-posed problem, since
we cannot calculate the so-called pseudo-inverse, that is (XT X)−1XT . Can we
determine the in-sample error Ein(h) anyhow? Answer the question first and then
use the code provided with the book to get a graphical intuition what happens.

2. Explore gradient descent and change the learning rate η. What happens to the
trajectory of the gradient descent? Is a fast gradient descent always a good idea?
(Hint: the answer is No!).

3. Find a binary classification dataset and construct a ROC curve using the fol-
lowing Algorithm 10 which considers all unique probabilities and looks at the
performance of each of these cutoff points in terms of the true- and false positive
rates.

Algorithm 10: ROC curve creation
roc_curve_points = []
Let P = {< p1, g1 >, . . . , < pn, gn >} be the order set with p j the estimated probabilities
for class 1 and g j the actual class
pos = |{< p j , g j >∈ P|g j = 1}|
neg = N − pos
for all distinct probabilities p in P passed in descending order do

Take the set Pselected = {< p j , g j >∈ P|p j ≥ p}
Add the point <

{|<p j ,g j>∈Pselected |g j=0}
neg ,

{|<p j ,g j>∈Pselected |g j=1}
pos > to roc_curve_points

end
Connect roc_curve_points in order

Implement the algorithm.
4. Assume you have less data samples (N) as you have features (p): p > N .

Could you still use empirical risk minimization (see Sect. 6.1.4) to explore the
dependency between the input and the label space? (Hint: the answer is “yes,
but ...”; besides arguing and thinking through the situation, explore the p > N
situation).

Chapter 7
Predictive Modeling without Notion of Time

After discussing various approaches to handle sensory data and to form a pre-
processed dataset as well as the theoretical underpinnings of supervised learning,
we can finally start making some real predictions about the quantified selves. For
Arnold we would, for example, like to make predictions on his training activities in
the coming week based on what we have seen in the past so that we can provide him
with appropriate support. In the case of Bruce we might be very interested to fore-
cast his mood during the coming week to pro-actively intervene in case of undesired
predictions.

In this chapter, we will cover a variety of popular machine learning techniques
that are able to generate such predictive models. The techniques discussed in this
chapter do not take temporal patterns into account, but create predictive models
on instances in isolation (remember that we have discussed approaches to enrich
our data in order to use some of the temporal aspects of the data, even though we
focus on isolated instances). We will discuss algorithms for both classification and
regression. To make the book concise and self-contained, we have decided to treat
the most popular algorithms on a high level. For an in-depth treatment the reader is
referred to one of the many dedicated machine learning books.

7.1 Learning Setup

Before we explain the algorithms in detail, let us discuss the learning setup. By
learning setupwe refer to two aspects: (i) the split of our data into training, validation,
and test data and (ii) the evaluation of the predictive performance. Remember that
the training set is used to learn models, the validation set to determine when we
should stop to avoid overfitting, and the test set as an independent measure of the
generalizability of the model that we have created.

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_7

123

124 7 Predictive Modeling without Notion of Time

Table 7.1 Learning setups for non-temporal learning algorithms

Data

Level Temporal Non-temporal

Individual Xtrain,qsi =
x1,qsi , . . . , xntrain ,qsi

Xtrain,qsi ⊂ Xqsi where |Xtrain,qsi | =
ntrain ∧ Xtrain,qsi ∩ Xtest,qsi = ∅

Xtest,qsi =
xntrain+1,qsi , . . . , xNqsi ,qsi

Xtest,qsi ⊂ Xqsi where |Xtest,qsi | =
(Nqsi − ntrain) ∧Xtrain,qsi ∩Xtest,qsi = ∅

Population - Xtrain ⊂ {Xqs1 , . . . ,Xqsn } where |Xtrain| = ntrain ∧Xtrain ∩Xtest = ∅

Unknown users Xtest ⊂ {Xqs1 , . . . ,Xqsn }where |Xtest| = (n−ntrain)∧Xtrain∩Xtest = ∅
Population - Xtrain = {Xtrain,qs1 , . . . ,Xtrain,qsn } (Note that we refer to the definition

of the training sets specified in the row for the individual level here)

Unseen data of
known users

Xtest = {Xtest,qs1 , . . . ,Xtest,qsn }

Whether we have a temporal dataset XT or a dataset where we do not assume
an ordering X influences our setup. In addition, as we have previously seen we
might have multiple users, each contributing a dataset. We identify the datasets of
the users via a subscript. We specify XT

qs1 , . . . ,X
T
qsn for temporal datasets, and a

similar notation for datasets without making any assumption about the temporal
ordering: Xqs1 , . . . ,Xqsn . Here, qsi represents user i . For the target we apply the
same convention. For individual datapoints within a dataset, we will use xi,qs j to
express the i th datapoint of the j th person.

So what can we do with this data?We can generate models at two different levels:
(i) on an individual level, by using only the data of a specific individual i (i.e. Xqsi)
or (ii) on a population level using data from multiple users. For the latter, we use
the union of the datasets: X = Xqs1 ∪ · · · ∪ Xqsn . Why would you go for a model
on a population level? Well, you might have limited data available per individual,
requiring a population oriented approach to have sufficient data. Obviously, if ample
data is available the individual model is likely to predict in a more accurate way due
to individual differences. When we consider the individual level models, the goal is
clear: we want to generate a model that predicts unseen data of that individual well.
On a population level we have more choices: we might be interested in predicting
the target variable of completely new (unseen) users well, or we might be interested
in predicting unseen data of known users accurately. Next to the different levels and
purposes, we have the distinction between temporal and non-temporal datasets. If
we think of the prediction of unseen data for the temporal case, we would take the
time into account to split our data. For non-temporal data we can arbitrarily choose
what part of the data we would like to predict. For predicting values of new users
there is no difference with respect to the learning setup.

The options are depicted more formally in Table7.1. This includes the way to
split up the data in a training and test set for each one of the settings. We did not

7.1 Learning Setup 125

include the validation set in this table for the sake of brevity, but the way to define it
is completely in line with the definition of the other two sets. We see in the table that
for the individual models with temporal data we select the first ntrain data (or time)
points for training and use the last Nqsi − ntrain data points for testing.

For the non-temporal data on the individual level we take an arbitrary subset
of our dataset of size ntrain and use the remaining points for testing. When we
consider the population level models for optimizing predictive performance for new
(unseen) users, we include all data from ntrain users as training data and all data of
the remaining users as test set. This allows us to train on certain users and evaluate
the performance of the model on new users for which we have not seen any of their
data yet. For the population level case, for unseen data of known users we take the
union of the training sets we have defined on an individual level over all n quantified
selves. This allows us to learn over all participants while we test on unseen data for
each participant. Of course, the associated targets are split in the same way as our
features since they are paired.

Let us move to the learning algorithms.

7.2 Feedforward Neural Networks

Wewill start our exploration with neural networks. Neural networks originated from
the 1940s when Pitts and McCulloch introduced the first computational neural net-
work. We will discuss neural networks by starting with the most simple network and
will move to more sophisticated variants after that.

7.2.1 Perceptron

In 1958 the first learning algorithm was defined by Rosenblatt developed for a neural
network model called the perceptron [100]. Figure7.1 shows the basic layout of the
perceptron, which just contains one neuron.

We can see the inputs on the left side of the figure (X1, . . . , X p), which are our
attributes. In addition we see the so-called bias input which is constant and typically
set to 1. The inputs are assumed to be numerical or binary values. The inputs and
the bias are connected to the neuron via arcs that each have a weight associated with
it (w0, . . . ,wp, we will express the entire vector by w). Based on the value of the
inputs and the weights, the network provides an output Y1. The computation is easy
for an instance. We first take the weighted sum of the inputs:

vi = wT xi =
p∑

n=0

wnx
n
i (7.1)

126 7 Predictive Modeling without Notion of Time

Fig. 7.1 Layout of the basic
perceptron neural network

We then apply an activation function, ϕ to determine the output of the neuron:

ŷ = ϕ(v) (7.2)

The type of activation function ϕ we use highly dependents on the target we should
predict. Rosenblatt used a signum function (1 if v > 0, 0 if v = 0, and -1 if v < 0) to
allow for classification. An identity function (ϕ(v) = v) can be used for regression,
and many others exist (e.g. a sigmoid, an s-shaped function such as the tanh).

Note that we use Y as the target variable, even though, following our notation,
Y refers to numerical targets. We do so because the perceptron (as most algorithms
covered in this book) are designed to output numerical targets. However, a mapping
from a categorical target G to a numerical target Y can easily be obtained. In case
we have two classes, we create a single binary attribute, where 0 represents one class
and 1 the other. If there are more than two classes, we can create a binary attribute
per class.

Let us get back to the perceptron and use this simple network for classification.
Imagine we have a dataset that contains two attributes of the data of an accelerometer
(represented by the x-and y-axis). It is shown in Fig. 7.2. The red points expresses
when the measurement is associated with an active user while the blue points repre-
sent an inactive one.

We want the neural network to learn to classify the data points correctly. For
this we can use the training algorithm that Rosenblatt identified. The algorithm is
expressed in Algorithm11.

We assume the target is either −1 or 1 and process the training set in its current
order. The variable between the brackets indicates the time step in the algorithm.Note
that the input vector x(n) also includes the bias as the first element. The parameter
η expresses the learning rate (commonly set between 0 and 1). The algorithm finds
values for the weight such that the perceptron spans up a hyperplane (as shown in
Fig. 7.2 in the form of a dotted line) that separates the two classes. The specification
of the hyperplane is:

7.2 Feedforward Neural Networks 127

Fig. 7.2 Example dataset
perceptron

Algorithm 11: Perceptron Learning Algorithm
w(0) = 0
n = 0
while there are still misclassified training examples do

n = n + 1
get the training example x(n) = xn mod N and the target value y(n) = yn mod N
compute the output of the neural network ŷ(n) = signum(w(n)T x(n))

adjust the weight according to w(n + 1) = w(n) + η[ŷ(n) − y(n)]x(n)

end

wT x = 0 (7.3)

It was shown byNovikoff [91] that given that the two classes are linearly separable
by a hyperplane as described in Eq.7.3, Algorithm11 quickly finds a solution that
fulfills yi = signum(wT xi) for all i . Do you remember the discussion from Chap.6
about the learnability of target functions? The proof fromNovikoff shows that we can
reduce the in-sample error to 0 and thus approximate the unknown target function.
Note that it is an approximation, since variousw (in fact, infinitelymany) can separate
the training data.

So far so good. Unfortunately, our neural network has its limits and these are
severe: it can only represent linearly separable cases for classification (i.e. only
classes we can separate with a hyperplane in the p dimensional input space). If the
classes are not linearly separable, Algorithm11 would not terminate but jump back
and forth. In case only a few training examples from the full dataset cause the trouble,
there is a potential cure called the pocket algorithm that can simply stabilize learning
outcome [99].

http://dx.doi.org/10.1007/978-3-319-66308-1_6

128 7 Predictive Modeling without Notion of Time

7.2.2 Multi-layer Perceptron

What about the situation represented in Fig. 7.3? The training examples cannot be
separated by any single hyperplane (or perceptron). However, after a bit of thinking
it becomes apparent that combining perceptrons P1 and P2 shown as dashed lines
in Fig. 7.3 can solve the problem of separating the training examples. How? Let
us assume P1 and P2 are characterized by the two vectors w(1) and w(2) which are
roughly pointing to the upper left and upper right of the figure respectively (note:
w’s are perpendicular to the hyperplane they define). Then we could classify the red
points at the top of the figure correctly by requiring thatwT

(1)x > 0 andwT
(2)x > 0.We

can even generalize this: it is always (and for every potential training dataset) possible
to find a combination of hyperplanes that can completely separate the training data
without errors as long as there are not any input vectors in the training exampleswhich
are identical but have different labels (think why this requirement is important).

These solutions can be modeled with more complex networks such as a multi-
layer neural network.We simply makemultiple (usually) fully connected layers each
containing one or more neurons. Connections are not present within a layer, but only
between layers. These networks are called multi-layer feedforward neural networks.

We can train this type of network using the well-known back propagation algo-
rithm. This algorithm is not necessarily guaranteed to generate the optimal solution
as it can get stuck in local optima but in practice works quite well. The algorithm is
based on the relationship between the error function (themean squared error between
Ŷ and Y) and the weights. It starts with a forward pass to calculate the predicted
output given the current input vectors. Errors are propagated backward in the net-
work, thereby adjusting weights of connections that have contributed to the error
more severely. It updates the weights in the direction where the mean squared error
decreases.

Fig. 7.3 Non-linearly
separable case

7.2 Feedforward Neural Networks 129

We are nearly ready to show the calculations. Assume that we have weights
between neurons noted as wi j , going from neuron i in a layer to neuron j in the next
layer. We require an integrable activation function. Let v j be the weighed sum of the
inputs of neuron j . Remember that we denote the calculated output of a neuron j for
training instance n by ŷ j

n and the desired output by y j
n . We assume that the neuron

identifiers at the output match the indices of the variables. The back propagation
algorithm is then expressed as follows:

�wi j = ηδ j ŷ
i
n (7.4)

δ j =
{

ϕ′(v j)(y
j
n − ŷ j

n) if j is an output node

ϕ′(v j)
∑k

1(δkw jk) otherwise
(7.5)

In the formula, the value of k is the number of neurons in the layer next to the layer
where neuron j is positioned. This algorithm is able to create solutions for both
regression and classification problems.

7.2.3 Convolutional Neural Networks

Recent advances have significantly accelerated the use neuronal networks in practice.
One type of neural networks that plays an important role in this development are
convolutional neural networks (CNN). We will discuss the idea behind CNNs on
an intuitive level. They are part of a class of networks that are often referred to
as deep neural networks. They have not often been reported in the context of the
quantified self so far. However, Bhattacharya et al. [15] have shown that this could
be a promising avenue. So we do not want to withhold it from you.

CNNs are not very different from the multi-layer neural networks we have just
discussed, except that there are layers preceding the conventional multi-layer neural
network layers. These layers automatically identify features within the input space.
These networks are currently mostly used for recognition of images and sound, but
other applications are becoming more and more widespread. They mostly assume
a 3D input space (think of the height and width of an image and the pixels R, G,
and B values as a 3D input space) but 1D or 2D input spaces are also possible.
For example, Bhattacharya et al. [15] use the amplitudes of the frequencies from a
Fourier Transformation as an input. We will explain CNNs from a 3D input space
perspective (after the explanation you will be able to see how we can tranfer this to
the 1D- or 2D-space).

Two types of layers exist to identify features: convolutional layers and pooling
layers. The convolutional layers contain filters that extract features from a so-called
receptive field. The receptive field is a part of the input space. Eachfilter is represented
by k neurons. The receptive field is usuallymuch smaller than the original input space.
Assuming that the input is of dimension n × m × r the receptive field is i × j × q

130 7 Predictive Modeling without Notion of Time

Fig. 7.4 Convolutional layer

Fig. 7.5 Max pooling

with i and j much smaller than m and n respectively, and q equal or less than r . A
filter is applied to such a receptive field (in fact, we apply the filter to each subset of
the input space that matches the size of the receptive field) and gives us the values
for k features for that receptive field. Hence, we end up with k times the number of
subsets of the input space that matches the size of the receptive field. The layer is
illustrated in Fig. 7.4. The filters can take different forms, for example they could
extract useful features from the input space similar to what we have seen in the
Principal Component Analysis earlier. These filters have to be learned, but this can
be done in an unsupervised way, or we could use kernel functions which we will
discuss later on. The pooling layers are simpler: they summarize the values in a
certain region of the space and represent the output as a neuron. The max pooling
layer is an example, which computes the maximum value of a p × p region of
neurons. Figure7.5 shows a max pooling approach for p = 2. After several of these
layers, we find a fully connected mutli-layer neural network that can be trained using
regular back propagation again.

Many more variants of neural networks exist. We will treat recurrent neural net-
works in the next chapter. For other variants we refer the reader to [58].

7.3 Support Vector Machines 131

7.3 Support Vector Machines

Anapproach that uses a similar setup to the one shown for neural networks are support
vector machines (SVMs) [121]. SVMs mainly target classification problems and
comewith very nice theoretical properties.Unlike neural networks, that aim tofinding
a hyperplane to separate classes, SVMs strive to find a hyperplane that maximizes the
distance between two classes. Let us return to our previous accelerometer example
to see what we mean here. Consider Fig. 7.6. The specification of the hyperplane that
separates the two classes is:

wT x + b = 0 (7.6)

This is nearly identical to the neural network based approach, except for the bias
b that is no longer part of the weight vector. In addition, we define two parallel
hyperplanes that can be found by moving the aforementioned hyperplane towards
the points of the two classes (+1 and−1 respectively) until wemeet one or more data
points of that class. For the class +1 the hyperplane specifications is wT x + b = 1
for the other class it is wT x + b = −1. Hence, instead of only expressing the desired
value of the function for the separating hyperplane we also express the value of the
function for the points positioned at the other two hyperplanes. The points that are
positioned on one of these two hyperplanes are called the support vectors. Removing
one of these pointswill likely impact the positioning of the hyperplane thatmaximizes
the distance between classes. Other points will not have that effect. So how do we
find this hyperplane? Well, we want to maximize the distance between the two outer
hyperplanes (as shown in Fig. 7.6). This distance is equal to 2

||w|| (we will not show
the proof here), meaning that the magnitude of the weights should be minimized
to maximize the separation between the two classes. In addition, we have the two

Fig. 7.6 Example dataset
SVMs

132 7 Predictive Modeling without Notion of Time

constraints on the value we have defined for the two parallel hyperplanes before (i.e.
points of the class should have a valuewT x+b ≤ −1 andwT x+b ≥ 1 respectively).
This results in a problem that can be solved using the so-called Lagrangianmultiplier.
The optimization problem is expressed mathematically as follows:

Q(α) =
N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

αiα j yi y j x
T
i x j (7.7)

where

N∑

i=1

αi yi = 0 (7.8)

αi ≥ 0 (7.9)

The αi represent newly introduced concepts from the Lagrangian multiplier. We
notice that Eq.7.7 does not depend on the weights – they are not part of the equation.
In addition, Eq.7.7 only depends on the inner product between the instances but not
the values for the attributes individually. Once we have found the maximum of the
function Q(α) we can compute the weights as follows:

w =
N∑

i=1

αi yi xi (7.10)

Given the weight vector w, finding the bias b is easy: just pick a point s which is a
support vector for class +1 and use the formula for the hyperplane to compute b.

We now have a pretty nice solution with excellent properties. But how about the
linear separability problem we previously encountered? Well, we also suffer from it
here. However, for support vectors this is solved in a different way by using so-called
kernel functions [39]. By using a kernel function we essentially map our inputs to a
different (usually higher dimensional) feature space in which the problem is linearly
separable. This is inspired by Cover’s theorem:

A complex pattern-classification problem, cast in a high-dimensional space nonlinearly is
more likely to be linearly separable than in a low dimensional space, provided that the space
is not densely populated.

Let us look at the example shown on the left side of Fig. 7.7 and assume that this
concerns accelerometer data again.Wewant to classifywhether the person is walking
or not. Clearlywe cannot separate these classes in a linear fashion. Take the following
function (referred to as a radial-basis kernel):

7.3 Support Vector Machines 133

Fig. 7.7 Example kernel function

K (x, x ′) = e− ||x−x ′ ||2
2σ2 (7.11)

This function is a distance metric between two points. Assume that we have a fixed
value for x ′, namely the center of the circles expressed on the left side of Fig. 7.7.
We calculate the kernel function (Eq.7.11) of each data point x with respect to x ′.
The results are stored in a new attribute called X3 displayed on the right side of
Fig. 7.7. We can now fit a hyperplane that separates the classes by means of the
newly introduced values: lower values for X3 are other activities while higher values
indicate walking. This is caused by the points represented in blue (walking) all lie
closer to the center (our center point x ′) compared to all points in the other circle
(other activity). The advantage of support vector machines is that we do not have
to calculate all the points in the new feature space after application of the kernel
function, but we can perform calculations in the initial feature space. This is referred
to as the kernel trick:

Q(α) =
N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

αiα j yi y j k(xi , x j) (7.12)

where k is a kernel function. Many options for kernel functions are available (such
as the one we have seen before). SVMs aim to solve a binary classification problem.
Extensions have also been proposed that allow regression problems to be represented
by SVMs as well, called Support Vector Regression (SVR) [108].

134 7 Predictive Modeling without Notion of Time

7.4 K-Nearest Neighbor

In the previous two algorithms, we have built a statistical model based on training
data by estimating a weight vector w. Another possibility is to simply look at similar
cases in the input space for which we know the target value and predict the target
variable based on these cases. The k-nearest neighbor approach is an example of the
latter. We look at the k closest points [x1, . . . , xk] from the training set compared to
a new example x and assign a class value ĝ based on the target values [g1, . . . , gk]
of those neighbors (or ŷ in case of regression problems based on [y1, . . . , yk]). The
algorithm is sometimes referred to as a lazy learner, and essentially postpones the
computation until a new case comes in. As a starting point, we need to define a
metric to compute distances between points to compute the k nearest neighbors,
and an aggregation function to come from the target values of those k neighbors
[g1, . . . , gk] to ĝ or from [y1, . . . , yk] to ŷ. We have extensively looked at distance
functions when we considered the clustering in Chap. 5 and will not treat them in
detail again. It suffices to say that we have some distance function d(xi , x j) between
two points xi and x j .

Let us focus on classification first. As our prediction we assign the majority class.
For the math enthusiasts, we define the majority class as follows:

ĝ = argmax
v∈G

k∑

i=1

δ(v, gi) (7.13)

where

δ(v, gi) =
{
1 if v = gi
0 otherwise

(7.14)

When there is a tie we can arbitrarily select a class. In Fig. 7.8 we consider our
previous example and a new point we have to classify (the black dot). If we select
k = 3 neighbors the points indicated by the yellow star are the 3 nearest neighbors
given a Euclidean distance function. Since the majority is blue (i.e. the inactive
class), this is the assigned class.

For a regression problem, the computation is even more straightforward. We
simply take the average of the values [y1, . . . , yk] of the k nearest neighbors:

ŷ =
∑k

i=1 yi
k

(7.15)

One aspect we have not taken into account is the distance of a neighbor to the
point we want to determine the value for. Closer points might be considered more
important as they are more similar. This is the basic premise of distance weighted

http://dx.doi.org/10.1007/978-3-319-66308-1_5

7.4 K-Nearest Neighbor 135

Fig. 7.8 Example k-nearest
neighbors

nearest neighbor. We can redefine the equations we have seen for classification and
regression by assigning a weight wi to each case:

ĝ = argmax
v∈G

k∑

i=1

wiδ(v, gi) (7.16)

ŷ =
∑k

i=1 wi yi∑k
i=1 wi

(7.17)

where the weight is defined as:

wi = 1

d(x, xi)2
(7.18)

Numerous variants of the algorithm have been introduced, the reader is referred
to [17] for a more extensive overview.

7.5 Decision Trees

Thus far the attributes that we use as predictors have mostly been numerical or binary
attributes, although k-nearest neighbor can obviously handle any type of attribute
depending on the distance function used. Decision trees are a prime example of
algorithms that handle all types of attributes in a very natural way. Figure7.9 shows
an example of a decision tree with attributes taken from the dataset produced by
Arnold. In the figure, the oval shapes represent the nodes of the decision tree, while

136 7 Predictive Modeling without Notion of Time

Fig. 7.9 Example decision
tree

activity
level

speed tired = no tired = no

low med ium high

tired = yes tired = no

<10 >= 10

the rectangles represent the leaves of the tree. A node in the tree is a decision point
associated with a certain attribute (e.g. the top node with the attribute activity level).
The branches (lines) showvalues associatedwith the attribute (e.g. low,medium, and
high). For numerical attributes the values in the branches represent a condition (e.g.
< 10). The leaves assign a value for a class or a numerical value for cases that have
fulfilled all conditions from the top node to the leave. A case with a value for activi t y
level = high and speed = 9 would for instance be classified as t ired = yes.

Obviously, we strive to find a tree that is able to present our data in a generalizable
way. We follow the ID3 algorithm [96]. Note that many other decision tree learning
algorithms exist [57]. We will start with an empty tree and build the tree by starting
with the most important attribute. But how do we define this importance?Wewill see
this soon. Here we assume that we have a measure of importance for an attribute Xi

in our dataset. The algorithm for building a tree for a classification task is specified
in Algorithm12.

Algorithm 12: Decision Tree Learning Algorithm
build_tree(X, G):
if stop condition reached then

return a leaf node the majority class in G
end
Xbest = argmaxXi∈X importance(Xi ,X)

create a node for Xbest
for all values v in the domain of Xbest do

create a branch from the create node labeled with v
set the tree under the branch with build_tree({xi ∈ X|xbesti = v}, {yi ∈ G|xbesti = v})

end
return the created node

Essentially, the algorithm creates branches recursively until a stop condition has
been reached (e.g. minimal number of cases in X). It creates a node that represents
the most important attribute in the part of the training set and creates branches for
each possible value of the attribute. For each branch a new tree is formed based on
the subset of the training set that contains the associated attribute-value combination.

7.5 Decision Trees 137

We still have a number of unanswered questions, the first being in what way
we can process numerical attributes using this algorithm. The various decision tree
algorithms handle this problem in differentways, butwewill consider a discretization
procedure following ID3 [96]. Using this procedure we can transform our numerical
attributes to categorical attributes with values that represent interval points of our
numerical attribute (Algorithm13).

Algorithm 13: Discretization procedure

Let < xi1, g1 >, . . . , < xiN , gN > be the continuous values for an attribute Xi
observed in N training instances paired with their class values

Sort the pairs low to high based on the value for Xi
respectively in the sorted list

interval_points = []
previous_class = g1
for j in 2,. . . ,N do

if g j is not equal to previous_class then

Add
xij−1+xij

2 to interval_points
Set previous_class to g j

end
end

The algorithm sorts the values of the continuous attribute and creates interval
points at values where the target changes. Table7.2 illustrates the procedure for two
attributes speed and heart rate given the target t ired. Here, interval points are
created at speed = 5 and speed = 9.5. So which interval point should we select?
Since we want to select a point that creates the best tree, we try a discretization using
each of the interval points and determine which one provides most information.

We have been referring to the best attribute and most information a lot. How
do we define this? Here, a common approach is to use the information gain. This
measure is based on the notion of entropy introduced by Shannon [106]. The entropy
is related to the amount of bits that are required to send a certain message. The
more information the message contains, the more bits are required. Consider our
classification problem. Let us say that we want to send information about the class of
a series of instances. If all instances are of the same class this will result in minimal
information, i.e. an entropy of 0. If we have a binary classification problem and
our instances are evenly spread over the two classes we have the maximum amount
of information. We need to communicate half of our instances in order to classify

Table 7.2 Discretization example

Speed 0 0 0 5 5 9 10 10

Tired no no no no yes yes no no

Interval points Speed – – –

138 7 Predictive Modeling without Notion of Time

them correctly, it can never be more. The entropy will be 1. Assume that we have
probabilities p1, . . . , pn associated with each of n classes, representing the relative
occurrence of each class in the data. The entropy is then defined as follows:

entropy(p1, . . . , pn) =
n∑

i=1

−pi log2 pi (7.19)

We can define the entropy of a dataset with targets G as:

entropy(G) =
∑

v∈G
−pvlog2 pv where pv = |{gi ∈ G|gi = v}|

|G| (7.20)

Given the knowledge we have built up in this section, we know that we should strive
for: leaves that cover a set of instances of the same class, i.e. an entropy of 0. We
start with our whole training set, which is likely to have a high entropy. Step by step
we should select attributes for our nodes such that we get closer to our goal, i.e. we
should split our data in such a way that we end up with splits of our training set
that have a low entropy. Hence, we should select attributes that reduce the entropy
as much as possible. Based on these considerations we define define the information
gain:

gain(Xi ,X,G) = entropy(G) −
∑

v∈Xi

|{x j ∈ X|xij = v}|
|X| · entropy({gi ∈ G|xij = v}) (7.21)

In the formula, we look at the original entropy of the set with labels G and the new
entropy if we create subsets by means of the values of the attribute Xi . The entropy
for each subset is calculated and weighed according to the size of the subset. Note
that ample improvements have been made to it [97].

We end this section by looking at decision trees that can be used for regression.
To do so, we need to change the criterion for splitting nodes and define what value
we assign to new cases in the leaves of the tree. Let us consider the value assignment
in the leaves first. Two variants exist. Regression trees assign the average value of the
instances of the training set that fulfil the criteria of a leaf. The other variant, called
model trees perform a regression on the relevant instances and use the regression
equation to assign a value to new cases.

Moving on to the splitting criterion we see that our information gain measure does
not work any more, since it requires categorical targets. An alternative for regression
is the standard deviation reduction, defined as:

sd_red(Xi ,X,Y) = σY −
∑

v∈Xi

|{yi ∈ Y|xij = v}|
|Y| σ{yi∈Y|xij=v} (7.22)

The underlying principle is that attributes that reduce the standard deviation (i.e. the
diversity in the target values) are preferred as instances will have more similarity in

7.5 Decision Trees 139

terms of the target value. A similar weighting as introduced for the information gain
(based on the size of the subsets) is applied.

7.6 Naive Bayes

The final basic method we will discuss in this chapter is Naive Bayes. Naive Bayes
is targeted towards classification problems. Classification is based on conditional
probabilities of the form p(g|x), also called posterior probability. Remember that
x represents an instance that we want to classify and g the corresponding class (i.e.
g ∈ G). p(g|x) expresses the probability of observing class g given the observation
x . How can we derive these conditional probabilities? Let us start with introducing
some calculations based on the data we have observed in our training set. We can
calculate p(g), the prior probability, i.e. the probability of observing a class g within
the dataset, as follows:

p(G = g) = |{gi ∈ G|gi = g}|
N

(7.23)

This is simply the number of observations of class g divided by the total number of
observations. We can calculate the probability that we observe x given a class g (i.e.
p(x |g)) as follows:

p(x |G = g) =
p∏

i=1

p(Xi = xi |G = g) (7.24)

where

p(Xi = v|G = g) = |{ j ∈ 1, . . . , N |(xij = v ∧ g j = g)}|
|{i ∈ 1, . . . , N |gi = g}| (7.25)

This is called the class conditional probability. In Formula (7.24) we encounter the
naive assumption in Naive Bayes (hence the name): we multiply the conditional
probabilities of individual attributes. We can do this under the assumption that the
attributes are conditionally independent. Obviously, this will not always hold: there
might be correlations between the attributes. However, it does simplify matters a lot
and in practice works quite well. We also see the consequences of this assumption
when we calculate the probability of observing the values for x (also called the
evidence):

p(x) =
p∏

i=1

p(Xi = xi) (7.26)

140 7 Predictive Modeling without Notion of Time

where

p(Xi = v) = |{ j ∈ 1, . . . , N |xij = v}|
N

(7.27)

We are now ready to calculate the posterior probability according to Bayes rule:

p(G = g|x) = p(x |G = g)p(G = g)

p(x)
(7.28)

The class we assign is the one with the highest probability:

ĝ = argmax
g∈G

p(G = g|x) (7.29)

Adisadvantage of theNaiveBayes approach is that the assigned probability of a target
drops to zero when we have an attribute-value pair we have not seen in combination
with the target. This might be a bit too harsh as it could for example be caused by a
lack of sufficient training data. The Laplace estimator can help here. We simply add
1 to the numerator and the number of values of the attribute to the denominator, i.e.

p(Xi = v|G = g) = 1 + |{ j ∈ 1, . . . , N |(xij = v ∧ gi = g)}|
|Xi | + |{ j ∈ 1, . . . , N |g j = g}| (7.30)

This gives a non-zero probability in case we have no observations and approaches
the actual probability when N becomes large. If we face a missing value for a certain
attribute we can simply ignore that attribute in the calculations, a very natural and
simple way of handling missing values. This is one of the advantages of the Naive
Bayes classifier.

So far we have only considered categorical attributes. Naive Bayes is able to cope
with numerical values as well, and in fact it does so in a very natural way. Instead
of using a probability mass function for discrete attributes, we describe the data in
terms of a probability density function (pdf) to represent p(Xi = v|G = g), e.g. the
normal distribution. When evaluating p(Xi = v|G = g) for an unseen data point the
pdf returns a numerical value reflecting the probability to observe this value. Thus,
the result can be used to predict the most likely class with Eq.7.29.

7.7 Ensembles

It is time to kick it up a notch.We have seen a variety of relatively simple models. But
simplicity comes at a price. We might not be able to achieve a very good predictive
performance. There are two main causes for that: (1) the expressive power of the
models might be insufficient causing a hampered performance (bias of the model,

7.7 Ensembles 141

see Sect. 6.2.3), or (2) the training data is simply too limited (variance of the data).
Ensembles can help out here. The idea behind ensemble learning is not to create a
single model using the algorithms we have considered but a number of these models.
In the end, the ensemble of models returns a combined answer that is the result of
a voting scheme for classification tasks or averaging for regression problems. Two
main streams of ensemble methods exist: bagging approaches (aimed at reducing
variance) and boosting approaches (you probably guessed it, aimed at reducing the
bias).

7.7.1 Bagging

In general, bagging (or bootstrap aggregation [29]) approaches are easy to under-
stand. They draw m samples Xi of size n (with replacement) from the original
datasetX. For each of the samples {X1, . . . ,Xm}wegenerate amodel: {M1, . . . , Mm}
(Algorithm14).

Algorithm 14: Bagging
models = []
for i in 1,…,m do

Take a sample Xi ⊂ X
Build a model Mi on training data Xi using some learning algorithm
Add Mi to models

end

In the end, we combine the output using majority voting as we have seen for
k-nearest neighbor. The sampling avoids overfitting of the models towards the data.
A prime example of a bagging approach using decision trees is the random forest
technique. The random forest technique generates m trees based on the aforemen-
tioned samples. In addition, it uses a selection of the attributes when creating the
decision trees: when an attribute needs to be selected in the process of building a tree
only a subset of the available attributes is considered. This reduces the chances that
all trees strongly resemble each other (e.g. if there are a few dominant predictors)
since very similar trees combined are not likely to predict a lot better than a single
tree.

7.7.2 Boosting

As said before, boosting aims to tackle the problem of bias. To do this, it iteratively
creates models that focus on the areas where mistakes are being made by previously
generated models. Take a look at Fig. 7.10.

http://dx.doi.org/10.1007/978-3-319-66308-1_6

142 7 Predictive Modeling without Notion of Time

Fig. 7.10 Boosting process

In the figure, we see that we start with our initial training setX and build an initial
model M1 on it using some learning algorithm. Then, we look at the performance of
M1 on the training set, and form a new training set X2 which weights cases where
we made mistakes with our previous model more heavily. This process is repeated
m times. We get specialized models that focus on subsets of the data. Together these
models havemore expressive power than a singlemodel, meaning that a singlemodel
might not be able to grasp all cases in the training set equally well. After the process
has been completed, we end up with m models (i.e. {M1, . . . , Mm}) that form an
ensemble and combine their output in the same way as we have discussed before.

Let us take a closer look into how we can compose new training sets. We consider
an example of a boosting approach aimed at classificationfirst. It is calledArcing [49].
Arcing works on the principle of assigning sampling probabilities {p1, . . . , pN } to
each of the N data points of the training set. As said, we build m models (i.e. take
m steps), and in the kth step the probabilities (with the identification of the step in
brackets, e.g. p1(k)) are set based upon the error of the ensemble we have built so
far. Let di denote whether the training example xi is incorrectly classified with the
current model k (di = 1) or not (di = 0). We define the weighted misclassification
rate ε in step k as follows:

εk =
N∑

i=1

pi (k)di (7.31)

7.7 Ensembles 143

The factor βk is defined to compute the new weights:

βk = 1 − εk

εk
(7.32)

The higher theweightedmisclassification rate εk the lowerβk . The algorithmassumes
εk ≤ 1

2 otherwise it terminates. The termination criterion essentially says that the
execution stops when you are predicting with a higher misclassification rate than
a random choice for a balanced binary classification problem. This means that βk

resides in the interval [1,∞] where 1 means the highest misclassification rate (i.e.
1
2) going to ∞ for very low weighted misclassification rates. The probabilities are
updated as follows:

pn(k + 1) = pn(k)β
dn
k∑N

i=1 pi (k)β
di
k

(7.33)

This shows that the sampling probability of a training instance n in the numerator
remains the same for correctly classified cases (i.e. β0

k = 1) and given that βk ≥ 1
will result in a higher sampling probability for incorrectly classified cases. These
probabilities increase when βk becomes higher (i.e. when there is a very low mis-
classification rate). The intuition is that for those cases there are only limited instances
that have beenmisclassified, so their weight needs to be severely increased compared
to the correctly classified cases. Finally, we assign a weight to each classifier k in
the voting proportional to the value of βk , the weight being log(βk). We then end up
with Algorithm 15.

Algorithm 15: Arc-fs
models = []
probabilities = []
Set p1(1), . . . , pN (1) = 1

N and add them to probabilities
for k in 1,…,m do

Create Xk by sampling from X with probabilities p1(k), . . . , pN (k) for training instances
Create model Mk using Xk as training data
Determine the misclassification of Mk (dn) for all training instances n = 1, . . . , N
Calculate εk using Eq.7.31
Calculate βk using Eq.7.32
Calculate the probabilities p1(k + 1), . . . , pN (k + 1) using Eq.7.33 and add them to
probabilities
Add Mk to models with log(βk) as weight

end

When we apply boosting to regression, life is a bit easier. We can simply consider
the difference between the predictions and the actual values, and train a model on
those differences. This is expressed in Algorithm16. To predict the output for a new
case x , we return the sum of the models applied to the case.

144 7 Predictive Modeling without Notion of Time

Algorithm 16: Boosting for regression problems
models = []
Y1 = Y
for k in 1,…,m do

Build a regression model Mi based on X and Yk
Add Mi to models
for i ∈ 1, . . . , N do

Compute the prediction of Mi for xi : ŷi
Add the difference yi - ŷi as new desired value to Yk+1

end
end

7.8 Predictive Modeling for Data Streams

The algorithms described earlier in this chapter are based on the same assumptions
discussed in Chap. 5 (unlimited storage, no conceptual drift). Let us consider a clas-
sification or regression task for which the assumptions listed above are not realistic.
Two different solutions are suggested within data stream mining (cf. [1], pp. 43): (1)
data-based solutions, building models on a subset of the full dataset, and (2) task-
based solutions that focus on changing the algorithms to make them more efficient.
Examples of data-based solutions are sampling and aggregationwhile approximation
algorithms (less precise as the algorithms we have seen before) is an example of the
task-based solutions. Let us look at two example algorithms, one for each solution
type.

The first algorithm (an example of a data-based solution) is based on the ensemble
learning approach we have just considered [123]. It assumes that the data can be split
into a number of chunks.Assuming n chunks,we refer to themas S1, . . . , Sn , Sn being
the most recent data. Chunks contain a certain number of instances that have arrived
in sequence (remember that we assume an ordering of instances in data streams). For
a windows size of ω, S1 would contain the first ω elements that arrive: x1, . . . , xω,
and Si contains xi−1·ω+1, . . . , xi ·ω. For each of the chunks we build a model and do
not need to store data beyond our window sizeω. We just save themodels and refer to
them to as M1, . . . , Mn . The weight of the models in the ensemble is set proportional
to the error it makes on the most recent data Sn: the higher the error on the most
recent data, the lower the weights of the classifier in the ensemble. In this way, we
do not ignore our old models, but do reduce their influence if they become obsolete.

The second algorithm, which exemplifies the task-based solutions, concerns a
decision tree learner called Hoeffding Trees [41]. The algorithm assumes that exam-
ples can only be seen once and data comes in at a continuous rate. If we want to build
our tree, we need to decide on the most important attribute we will use as the root of
the tree. We will use the first instances of our stream for this. Once we have decided,
we will use the succeeding instances to decide on how to proceed further down the
tree. So when are we certain enough about the choice for an attribute? When do we
have enough data to decide? For this we use the Hoeffding bound (see Chap.6.2.1).

http://dx.doi.org/10.1007/978-3-319-66308-1_5
http://dx.doi.org/10.1007/978-3-319-66308-1_6

7.8 Predictive Modeling for Data Streams 145

We want to have a measure that provides us a real-value r on the suitability of an
attribute with range R (for a probability this would be [0, 1], for the information
gain log(|G|) where |G| represents the number of classes). Let n be the number of
instances we have seen so far. We want to say with probability 1− δ that the mean of
the variable r is within distance ε from the true mean. We define Hoeffding bound ε

by rearranging Hoeffding’s inequality from Eq.6.15

ε =
√

R2ln(1
δ
)

2N
(7.34)

If we consider the distance of our best and second best attribute computed based on
N instances (e.g. the difference between the highest and second highest information
gain calculated), we can create a node in our tree when the difference between the
two scores is greater than the computed Hoeffding bound ε. We then consider the
new instances (we can throw away the n instances we used before) and continue
building our tree, and end up with a nice tree for which there was no need to store
all data. This approach is based on the assumption that the data is stationary, i.e. we
do not assume temporal locality, unlike the previous approach we explained.

The final option of data stream mining we want to discuss is reducing the amount
of data by making a selection of relevant instances that we can use to build our model
at certain time points. As said before, we can no longer assume that we can store
everything. So which instances should we keep then? Many strategies exist. Usually,
a fixed window is used. We call this a sliding window since we only store the n most
recent instances, continuously replacing the oldest instance with the incoming one
(or only do that after every ith instance that arrives to “slow down” the data). Other
approaches replace instances that are stored in the window with new instances with
a certain probability.

7.9 Practical Considerations

We have seen a lot of different approaches, but will they just work without any effort
by simply applying them to the pre-processed data?Well, not quite. This section will
discuss some practical considerations concerning the question how we can get the
model that generalizes best. We will discuss feature selection and regularization for
this purpose.

7.9.1 Feature Selection

While some approaches are able to cope with large sets of features (e.g. a random
forest), the performance of other approaches (e.g. a decision tree) can severely de-

http://dx.doi.org/10.1007/978-3-319-66308-1_6

146 7 Predictive Modeling without Notion of Time

grade when features are present that have limited predictive power, they tend to result
in overfitting on the training data. Therefore, we want to select those features that
come with predictive power.

A common approach is to compute the Pearson coefficient to determine the cor-
relation of an attribute with the target. We select the n attributes with the highest
magnitude (which could be a positive or negative correlation of course). We com-
pute the value in the following way:

ρ(Xi) =
∑N

j=1(x
i
j − X̄i)(y j − Ȳ)

√∑N
j=1 (xij − X̄i)

2

√√√√
N∑

j=1

(y j − Ȳ)
2

(7.35)

The numerator of the equation expresses the covariance between the attribute Xi and
the target Y which is assumed to be a single numerical value. X̄i and Ȳ denote the
mean. The denominator is the product of the variance of the attribute and the target.
ρ(Xi) = 1 expresses the maximum positive correlation, -1 the maximum negative
correlation, and 0 no correlation. Using the Pearson coefficient is very simple but
could ignore more complex dependencies, e.g. multiple features, that only together
exhibit some predictive power.

Algorithm 17: Forward selection
selected_attributes = {}
performances = []
for k = 1, . . . , p do

best_attribute = ””
best_performance = ∞
available_attributes = X \ selected_attributes
for l ∈ 1, . . . , |available_attributes| do

temp_attributes = selected_attributes ∪ available_attributesl
performance = learn_model(temp_attributes,X)

if performance < best_performance then
best_attribute = available_attributesl
best_performance = performance

end
end
performances[k] = best_performance
selected_attributes = selected_attributes ∪ best_attribute

end
return performances

An alternative approach is an iterative process to compose a suitable set of
attributes. Let us first focus on forward selection (for instance used by [74] to select
features for context recognition). We start with an empty set of attributes and itera-
tively add the attribute that results in the best performance. Here, performance can
be measured on the training set. Assuming we obtain a performance score when we

7.9 Practical Considerations 147

provide the learning algorithm with a set of attributes and a dataset (a low value of
the performance score is assumed to be good, e.g. the mean squared error), our se-
lection method can be written according to Algorithm17. This returns performance
scores under varying numbers of attributes. For computational reasons, we select one
attribute at a time and do not consider all possible combinations (it is a heuristic).
In the case study, we will see an example of the influence of the number of selected
attributes upon the performance.

Besides forward selection, we can also use backward selection. This works ac-
cording to the same principles except that we start with the set of all attributes
and iteratively remove attributes that have the least impact on performance. See
Algorithm18.

Algorithm 18: Backward selection
selected_attributes = X
performances = []
performances[p] = learn_model(selected_attributes,X)

for k = p − 1, . . . , 1 do
worst_attribute = ””
best_performance = ∞
available_attributes = selected_attributes
for l ∈ 1, . . . , |available_attributes| do

temp_attributes = selected_attributes \ available_attributesl
performance = learn_model(temp_attributes,X)

if performance < best_performance then
worst_attribute = available_attributesl
best_performance = performance

end
end
performances[k] = best_performance
selected_attributes = selected_attributes \ worst_attribute

end
return performances

7.9.2 Regularization

As we have discussed in Chap. 6 we want to learn models that are generalizable, i.e.
that allow us to make accurate predictions for unseen data, not just for the training
data. We have discussed that more complex models tend to overfit. We could try to
overcome this problem by selecting attributes based on a performance score as we
have seen previously.

Awidely used alternative inmachine learning is regularization. The basic assump-
tion behind regularization is that less complex models and small model parameters
should be preferred (Occam’s razor). To apply regularization, we add a regularization
term to the objective function (such as the one in Eq.6.5) of our learning algorithms.
This term punishes the complexity of the model and allows us to strike a balance

http://dx.doi.org/10.1007/978-3-319-66308-1_6
http://dx.doi.org/10.1007/978-3-319-66308-1_6

148 7 Predictive Modeling without Notion of Time

between in-sample error and model complexity during the training process. In case
of a linear regression (Eq.6.9) the objective function would be modified as follows:

Ein(h) = 1

N
(Y − θTX)T (Y − θTX) + (θ) (7.36)

The term (θ) that we have added is called the regularizer. Several choices for(θ)

are possible. In practice, two specific regularizer are often used. First, (θ) = λθT θ

where λ is a real-value constant. The higher the value for λ the less complex will the
model be. Why is that? As λ increases the importance of regularizer for the objective
function in Eq.7.36 increases. Therefore higher values for the model parameters
θ are punished even if they would have minimized the original objective function
(Eq.6.9). This regularized version of the linear regression is called ridge regression
(or Tikhonov regularization).

Second, (θ) = λ||θ ||1 where ||θ ||1 is the so-called L1 norm that simply adds
the absolute values of the elements of the vector θ . Compared to the first regularizer
we have discussed, there is a striking difference that is far from obvious: While
λθT θ tries to keep model parameters small, the second regularizer λ||θ ||1 shrinks the
influence of some of the features to 0. Thus, the higher the value for λ the less features
will be included in the model, a convenient mechanism for selecting features. This
regularized version of the linear regression is called LASSO (least absolute shrinkage
and selection operator) regression [117]. Recently, both regularizers have been used
jointly under the term elastic net regularization [133]. One final question remains:
How dowe select the best λ? In practice, λ is systematically explored (varying it from
0 to a large positive value). For each value λ we apply cross validation to determine
the predictive performance of the corresponding model and finally choose the λwith
the best performance.

We hope you are as excited about regularization as we are, since it is a basic
ingredient in many machine learning algorithms. So we recommend to study it in
more detail, if you want to dive deeper into the field, see e.g. [57].

7.10 Case Study

For the crowdsignals dataset we have identified two tasks in Chap. 2: a classification
task, namely the prediction of the label representing the activity of a user, and a
regression task revolving around the prediction of the heart rate. We will study the
performance of the algorithms we have introduced in this chapter upon these two
tasks.

http://dx.doi.org/10.1007/978-3-319-66308-1_6
http://dx.doi.org/10.1007/978-3-319-66308-1_6
http://dx.doi.org/10.1007/978-3-319-66308-1_2

7.10 Case Study 149

7.10.1 Classification: Predicting the Activity Label

The first task we address is the prediction of the label associated with an instance.
Since we only have data of a single user, the prediction resides on the individual
level. We are going to consider this task by looking at the data instances in isolation,
i.e. we will not consider the order of the instances explicitly, although we will use the
temporal features we have identified in Chap.4. We will therefore sample instances
for our training and test set randomly and do not take the first period of data for
training and the remainder of the data for testing. We made this choice because we
have limited data available. We mostly see single (connected) periods in which a
certain label has been assigned. Hence, if we would split based on time we would
train on labels that are not part of the test set and we would test on labels we did
not train upon. This would be a violation of the requirements in Sect. 6.1, namely,
that the joint distribution p(x, y), and especially p(x), of the training set should be
identical or at least similar to the one of the test set. In addition, it is interesting to
see how well we are able to detect activities solely based on the sensory data at a
certain time point, or just a few time points before. As a performance metric we use
the accuracy.

7.10.1.1 Preparing the Dataset for Learning

So how do we go about this task? Well, first of all we need to define the target of
the classification task. While we previously used a combination of binary attributes
to represent the label (i.e. an attribute for each label value) we will now merge these
into a single categorical attribute. This merging is not always trivial. There is a trivial
case though: if we have a value of 1 for one label attribute in the instance and a 0
for all others we can safely assign that label. However, it might be that more than
one label has been assigned to an instance, or no label at all. In such cases, we will
assign an ’unknown’ label. Once we have assigned the label, we remove the cases
with the ’unknown’ label: we do not want to pollute our dataset with labels we do
not know the correct value of. An alternative could be to look within the intervals to
see what activity was indicated for most of the time. Given the level of granularity
and level of precision this does not sound very reasonable. In addition, if we would
keep the label ’unknown’, the learning process could be disturbed, since some of the
cases might actually be clear examples for other labels. Hence, the algorithm would
not be able to learn those labels properly anymore.

We end up with a cleaned set of attributes and accompanying classes with a total
of 1837 out of the previous 2895 instances. Since we have sufficient instances there
is no need for a cross validation scheme: we split the dataset into a training set (70%
of the data, 1285 instances) and a test set (the remaining part, 552 instances). In order
to learn on a representative set, we do so in a stratified way, making sure that the
labels are represented equally frequent in both the training and the test set.

http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_6

150 7 Predictive Modeling without Notion of Time

7.10.1.2 Selecting Attributes

Next,we select the attributeswe are going to use to predict.Weuse different subsets of
attributes to study the their added value. The subsets are shown in Table7.3. The basic
features contain a total of 21 features that we initially described in Chap.2. These are
the cleaned variants (i.e. outliers removed, missing values imputed, and the lowpass
filter applied to the period attributes). In addition, we have the PCA features where
we use 7 components that explain nearly all variance.We created time-based features
in Chap.4 using the mean and standard deviation over a short historic window for
all the 28 features we identified before, resulting in 28× 2 = 56 additional features.
From the frequency domain we selected 18 measurements that are likely to exhibit
periodic patterns. For each of these features we apply 3 aggregation functions for the
frequency domain and have the amplitudes of 21 different frequencies. An observant
reader might spot that we use a windows size of 40, so we would expect to see 41
different frequencies. The package we use however limits the output to half of the
frequencies. This has to do with the real and imaginary part of the periodic functions.
Discussing this is beyond the scope of this book. This totals to 18 × 24 = 432
features. Finally, we add a feature representing the cluster the data instance is part
of (cf. Chap. 5). We do not use the temporal patterns that result from the labels as
this would be cheating: it contains information about the current label, and hence the
class we aim to predict, as well.

For some of the settings, we have a reasonably high number of features (at most
517). Useless features could have a severe impact on the performance of our learn-
ing algorithms. Thus, we also consider feature selection. We use forward selection
to study which features contribute most to the predictive performance. We apply
a simple decision tree classifier on the training data using the subset of features
considered and measure its accuracy. Of course, the choice for the decision tree
could make the selected features less suitable for the other algorithms but we want
to keep things simple and therefore refrain from exploring this for every algorithm
separately. Figure7.11 shows the impact of adding the best features iteratively for
the first 50 features. We see that after selecting around 5 features the performance

Table 7.3 Attribute subsets used for classification case

Dataset name Basic features PCA Time-and
frequency
based features

Clusters #features

Initial set
(cleaned)

21 21

Chapter3 21 7 28

Chapter4 21 7 56 + 432 516

Chapter5 21 7 56 + 432 1 517

Selected
features

2 + 8 10

http://dx.doi.org/10.1007/978-3-319-66308-1_2
http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_5
http://dx.doi.org/10.1007/978-3-319-66308-1_3
http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_5

7.10 Case Study 151

Fig. 7.11 Feature selection
for the label prediction task
(performance measured on
the training set)

on the training set no longer substantially increases (by the way, look at the high
accuracy scores we obtain in this initial run already!). We select 10 features as this
number of features is selected based on a decision tree, other approaches might
require slightly more features because they are able to exploit the additional infor-
mation. The selected features include only time -and frequency based features. Time
related features that are selected are the mean of the pressure measured by the phone
and the standard deviation of the x-axis of the gyroscope. The frequency features
included are the amplitude of the 0Hz frequency (i.e. the intercept) for the y-axis of
the accelerometer of the phone, the entropy of the y-axis of the magnetometer of the
watch, the frequency with the highest amplitude for the z-axis of the magnetometer,
the weighted frequency of the y-axis of the gyroscope of the watch, the amplitude
of the 1Hz frequency for the y-axis of the phone’s gyroscope, the amplitude of the
1.9Hz frequency of the x-axis of the accelerometer of the phone, and the amplitude
of the 0.9Hz frequency and 0.5Hz frequency for the z-axis of the magnetometer of
the watch and the y-axis of the accelerometer respectively.

7.10.1.3 Model Complexity and Tuning Parameters

We have identified the training set as well as the different subsets of features. We
are almost ready to apply the various learning algorithms. Before that, however,
we should be aware that we do not want to overfit our models towards the training
data (remember our discussion in Chap.6). Of course, one solution we have already
considered, namely to select a number of features, but many alternatives exist. In this
section we will focus on punishing overly complex models (regularization) and we
should also set the parameters of the learning algorithms in an appropriate way.

Let us first consider regularization. As we have discussed we can add a regularizer
to the objective functions, punishing more complex models. The regularizer comes
with a regularization parameter. The higher the parameter value, the more complex

http://dx.doi.org/10.1007/978-3-319-66308-1_6

152 7 Predictive Modeling without Notion of Time

Fig. 7.12 Influence of
regularization parameter
upon accuracy (notice the
log scale on the x-axis)

models are punished, and hence, the more simple models (with low weights) are
favored. Figure7.12 shows the impact of the regularization parameter upon the per-
formance for both the training and the independent test set. Although the differences
are not that big (this is very dependent on the variance of the data), we do observe a
trend that the performance on the training set goes down (in fact it always behaves
that way) when we increase the value of the parameter while the performance on the
test set goes up. Hence, we end up with a better generalizable model thanks to an
appropriate setting for the regression parameter.

Next, the setting of the parameter values of the learning algorithms can severely
impact their performance. Some parameters represent the complexity of the resulting
models as we have seen in the previous example, while others represent different
aspects such as the shape of the objective function. We will focus on a decision tree
again. One parameter allows us to set the minimum number of examples per leaf. If
we set this number too low, overfitting is likely to occur since leafs represent only
limited examples. Hence, we could say that this parameter says something about the
complexity of the tree. Ifwe consider Fig. 7.13we see that performanceon the training
set increases when we decrease the minimum number of example per leaf. The same
holds for the test set up to a certain extent. There is however a breaking point: the
test set performance drops when a value smaller than 5 is selected, corresponding to
overfitting.

So how do we find the best settings for these parameters? Well, we should refrain
from using information from the test set (otherwise we are in fact optimizing on the
independent test set and are snooping data). The approach we take is to try different
parameter settings and evaluate their performance using a 5-fold cross validation
approach on the training data. Using such an approach, we have a good indication
on the generalizability of our models. We identify the most important parameters for
each of the classification methods and determine a set of parameter values. We then

7.10 Case Study 153

Fig. 7.13 Setting for the
minimum number of points
per leaf for a decision tree
learning algorithm versus the
accuracy

explore all different combinations (a grid search) and select the values that perform
best in the cross validation. We use these to generate a model from the complete
training set. Table7.4 shows an overview of the algorithm and the variants as well
as the parameters we vary. A lot of parameters can be varied but the ones we have
selected provide sufficient opportunity to tailor the approach to the problem at hand.
We will use all algorithms we have explained for classification (except the ones from
the field of data stream mining).

7.10.1.4 Results

We now have all ingredients to run the algorithms and hopefully be impressed by
their performance! We will evaluate the performance of the algorithms on both the
training and test set. Various algorithms involve a stochastic process (random forests,
neural networks, and the support vector machines depending on the kernel function)
so for these we do not just do a single run of the algorithm but average their score
across five runs of the algorithm. We could argue that it would be best to choose the
single model with the highest value for the performance. However, we strive for an
overall good performance, not for a single exceptional run.

The results are shown in Table7.5. In the table we have also indicated the 95%
confidence intervals. In order to calculate these intervals we compute the standard
deviation of the accuracy (a) by sd = √

a(1 − a)/n. For the training set, n = 1285
while for the test set n = 552. The 95% confidence intervals are calculated by adding
two times the standard deviation (upper bound) and subtracting it (lower bound). A
graphical illustration of the performance on the test set is presented in Fig. 7.14.
We can see that we obtain a very high accuracy on both the training and the test
set. Apparently the problem is not very difficult to tackle with all of the sensory
data we have. In addition, we only have data from several hours which might make

154 7 Predictive Modeling without Notion of Time

Table 7.4 Algorithm variants and parameters varied

Algorithm Variant description Parameters varied

Neural Network
(NN)

Multi-layer perceptron with 1 or 2
hidden layers, a logistic activation
function and one output node per
class

Hidden layer composition: {single
layer with 5, 10, 25, or 100 neurons,
two layer with 100 and 5 neurons or
100 and 10}
Maximum iterations: {1000, 2000}

Support Vector
Machines
(SVM)

SVM with kernel function with one
SVM model per class

maximum iterations: {1000, 2000}
C: {1, 10, 100}
tolerance = {0.001, 0.0001}
kernel function: {rb f, polynomial}

K-Nearest
Neighbor (KNN)

KNN model using simple Euclidean
distance

k: {1, 2, 5, 10}

Decision Tree
(DT)

Decision tree algorithm following the
CART approach

Minimum samples per leaf:
{2, 10, 50, 100, 200}
splitting criterion: {gini, entropy}

Naive Bayes
(NB)

Basic Naive Bayes approach -

Random Forest
(RF)

Basic Random forest approach Minimum samples per leaf:
{2, 10, 50, 100, 200}
number of trees: {10, 50, 100}
splitting criterion: {gini, entropy}

our problem easier because the circumstances under which the measurements have
taken place can be assumed to be similar. Finally, we also have a substantial overlap
between our windows in the time and frequency domain (remember that we selected
a 90% overlap). This could have resulted in very similar instances in the training
and the test set, making it easier to obtain good performance. If we would have had
more data we could have reduced this overlap. In the literature related to activity
recognition scores ranging between 0.65 and 0.98 have been observed [11, 78].

When we explore the results in a bit more detail, we observe that the addition of
the temporal features is beneficial for some algorithms, especially for the random
forest: we see a significant improvement as the confidence intervals do not overlap
with those without the temporal data. The selection of features up front (i.e. taking
the top 10 features) did not help: the performance is severely degraded across the
algorithms except for the decision tree, this is probably caused by the fact that we
use the decision tree algorithm to select the best features, biasing the selection. In
terms of best performance, the random forest exhibits the highest score, although
it is not significantly better compared to the other algorithms, except for the naive
bayes approach. The k-nearest neighbor approach obtains the perfect score on the
training set, caused by the fact that it simply memorizes all training data (hence, it
is trivial to obtain the perfect score) but the generalizability is still good, this could
be caused by the relative similarity of the data we train and test on.

7.10 Case Study 155

Ta
bl
e
7.
5

Pe
rf
or
m
an
ce

of
al
go
ri
th
m
s
on

la
be
l
cl
as
si
fic
at
io
n
ta
sk

(N
N

=
N
eu
ra
l
N
et
w
or
k,

R
F

=
R
an
do
m

Fo
re
st
,S

V
M

=
Su

pp
or
t
V
ec
to
r
M
ac
hi
ne
,K

N
N

=
K
-N

ea
re
st
N
ei
gh
bo
r,
D
T

=
D
ec
is
io
n
T
re
e,
N
B

=
N
ai
ve

B
ay
es
)

A
pp
ro
ac
h

N
N

R
F

SV
M

K
N
N

D
T

N
B

Fe
at
ur
es

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

In
iti
al
se
t

0.
98
94

(0
.9
83
7
-

0.
99
51
)

0.
96
99

(0
.9
55
4
-

0.
98
45
)

0.
99
91

(0
.9
97
4
–

1.
00
08
)

0.
96
74

(0
.9
52
3
–

0.
98
25
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
97
10

(0
.9
56
7
–

0.
98
53
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
97
28

(0
.9
59
0
–

0.
98
67
)

0.
99
14

(0
.9
86
3
–

0.
99
66
)

0.
92
75

(0
.9
05
5
–

0.
94
96
)

0.
93
00

(0
.9
15
7
–

0.
94
42
)

0.
91
30

(0
.8
89
1
–

0.
93
70
)

C
ha
pt
er
3

0.
98
97

(0
.9
84
1
–

0.
99
54
)

0.
96
70

(0
.9
51
8
–

0.
98
22
)

0.
99
88

(0
.9
96
8
–

1.
00
07
)

0.
96
59

(0
.9
50
5
–

0.
98
14
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
97
10

(0
.9
56
7
–

0.
98
53
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
97
28

(0
.9
59
0
–

0.
98
67
)

0.
98
99

(0
.9
84
3
–

0.
99
55
)

0.
92
57

(0
.9
03
4
–

0.
94
80
)

0.
92
14

(0
.9
06
4
–

0.
93
64
)

0.
90
94

(0
.8
85
0
–

0.
93
39
)

C
ha
pt
er
4

0.
99
81

(0
.9
95
7
–

1.
00
05
)

0.
97
43

(0
.9
60
8
–

0.
98
78
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
99
38

(0
.9
87
2
–

1.
00
05
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
98
55

(0
.9
75
3
–

0.
99
57
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
97
83

(0
.9
65
8
–

0.
99
07
)

0.
99
46

(0
.9
90
4
–

0.
99
87
)

0.
96
56

(0
.9
50
1
–

0.
98
11
)

0.
94
79

(0
.9
35
5
–

0.
96
03
)

0.
91
67

(0
.8
93
1
–

0.
94
02
)

C
ha
pt
er
5

0.
99
89

(0
.9
97
1
–

1.
00
08
)

0.
97
25

(0
.9
58
5
–

0.
98
64
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
99
28

(0
.9
85
5
–

1.
00
00
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
98
55

(0
.9
75
3
–

0.
99
57
)

1.
00
00

(1
.0
00
0
–

1.
00
00
)

0.
97
83

(0
.9
65
8
–

0.
99
07
)

0.
99
53

(0
.9
91
5
–

0.
99
91
)

0.
96
01

(0
.9
43
5
–

0.
97
68
)

0.
94
71

(0
.9
34
6
–

0.
95
96
)

0.
91
67

(0
.8
93
1
–

0.
94
02
)

Se
le
ct
ed

fe
at
ur
es

0.
88
12

(0
.8
63
2
–

0.
89
93
)

0.
84
93

(0
.8
18
8
–

0.
87
97
)

0.
99
95

(0
.9
98
3
–

1.
00
07
)

0.
98
08

(0
.9
69
1
–

0.
99
25
)

0.
97
67

(0
.9
68
2
–

0.
98
51
)

0.
95
11

(0
.9
32
7
–

0.
96
94
)

0.
89
88

(0
.8
82
0
–

0.
91
57
)

0.
86
96

(0
.8
40
9
–

0.
89
82
)

0.
99
92

(0
.9
97
7
–

1.
00
08
)

0.
97
64

(0
.9
63
5
–

0.
98
94
)

0.
80
00

(0
.7
77
7
–

0.
82
23
)

0.
80
62

(0
.7
72
5
–

0.
83
98
)

http://dx.doi.org/10.1007/978-3-319-66308-1_3
http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_5

156 7 Predictive Modeling without Notion of Time

Fig. 7.14 Visualization of accuracy include confidence intervals

Fig. 7.15 The resulting decision tree using the selected features

Let us dive into a bit more detail of the models that we have now obtained. The
most insightful would be the decision tree. To simplify matters, we take the variant
with the selected features. Figure7.15 shows (part of) the decision tree. We see that
the temporal feature which computes the standard deviation of the x-axis for the
gyroscope of the phone is used in the root node. In addition, if we go down the tree
we see that the frequencies of the classes in the training data (expressed as a vector
following the identifier value) indeed move towards a single class. This happens very
nicely, although the tree is rather specific and the leaves only have a limited number
of examples. Still, the generalizability within this dataset is good. If we look into
the details of the parameter settings, we see that a minimum of 2 cases per leaf is
selected as well as the entropy splitting criterion.

Exploring one of the best classification algorithms, the random forest combined
with the selected attributes, is a bit more tricky as we do not have a single tree but

7.10 Case Study 157

Table 7.6 Feature
importance Random Forest

Feature Importance

gyr_phone_x_temp_std_ws_120 0.2855

press_phone_pressure_temp_mean_ws_120 0.2499

acc_phone_y_freq_0.0_Hz_ws_40 0.2433

mag_watch_y_pse 0.0873

mag_phone_z_max_freq 0.0341

gyr_watch_y_freq_weighted 0.0284

gyr_phone_y_freq_1.0_Hz_ws_40 0.0255

acc_phone_x_freq_1.9_Hz_ws_40 0.0227

acc_watch_y_freq_0.5_Hz_ws_40 0.0164

mag_watch_z_freq_0.9_Hz_ws_40 0.0068

we have a lot of them (the best parameter value selected for the number of trees is
50 combined with a minimum of 2 samples per leaf and the entropy as a splitting
criterion). We can however look at the importance of the various features, shown in
Table7.6.

Finally, we can explore where the random forest algorithm tends tomakemistakes
(i.e. which labels are confusing). The confusion matrix is shown in Table7.16. We
observe a lot of high numbers on the diagonal, indicating a high accuracy. We do
see that the algorithm predicts a very limited number of cases incorrectly, washing
hands is classified as eating two times, while walking is predicted to be standing for
two times.

To summarize, we obtain excellent results for our dataset. However, it is hard to
say whether we would perform equally well if we would have a richer dataset. Still,
the steps that we have explained are precisely the same ones that you would perform
for any other dataset, which is the main purpose of this case study.

7.10.2 Regression: Predicting the Heart Rate

The next task we are going to consider is to predict the heart rate of the user based
on all other measurements, including the label. This is a regression task since we are
aiming to predict a continuous value. We will address this as a temporal task: we
will learn on the first part of the data (in terms of time) and predict for the remaining
part of the data, following the setup we have described in Sect. 7.1. The approaches
we use from this chapter will not exploit the ordering of the data, but we still have
the temporal features we have identified in Chap.4. We will go through each of the
steps in somewhat less detail compared to our previous classification problem since
the approach is very similar. Instead of the accuracy for our previous problem we
will use the mean squared error as a performance metric (i.e. the lower the better).

http://dx.doi.org/10.1007/978-3-319-66308-1_4

158 7 Predictive Modeling without Notion of Time

Fig. 7.16 Random forest confusion matrix for crowdsignals classification task

7.10.2.1 Preparing the Dataset for Learning

As said, we are going to address this problem as a temporal learning problem.We take
an interval from the starting point of our measurements to about halfway (totaling
to 1422 data points for training). We have selected this point because nearly all
activities (that are likely to be highly influential on the heart rate) are reflected in this
training period. As a test set we select the interval following our training interval. In
the quantified self setting this would represent collecting some labeled data from the
user at first, and seeing how well we are able to predict for that user. We only use part
of the dataset for testing to avoid including totally new activities we did not train on
(and hence, could not train ourmodel properly for). Hence, we study howwell we can
create generalizable models for activities we have seen before, and not how well we
generalize for totally new activities with very different measurement characteristics.
This would be a more difficult problem while the problem is already pretty difficult
as we will see. The test set contains 736 instances. Figure7.17 illustrates the selected
training and test set. In the regression case we do not remove any additional time
points since the heart rate is known everywhere or has been interpolated at least.

7.10.2.2 Selecting Attributes

We again go through the attribute selection phase. We define a number of subsets
similar towhatwe have done for the label prediction task. Table7.7 shows the number

7.10 Case Study 159

Fig. 7.17 Training and test set split for heart rate prediction task

Table 7.7 Attribute subsets used for regression case

Dataset name Basic features PCA Temporal
features

Clusters #features

Initial set
(cleaned)

21 21

Chapter3 28 7 35

Chapter4 28 7 71 + 432 538

Chapter5 28 7 71 + 432 1 539

Selected
features

1 1 6 + 2 10

of features included. We have a few more basic features (we clearly exclude heart
rate, but include the binary attributes representing the individual activity labels). The
same holds for the temporal features: the categorical temporal features for the labels
have been included while the temporal features associated with the heart rate are no
longer present.

We also made a selection of features, based on the Pearson coefficient. The cor-
relation values for the selected features, which are the 10 features with the most
extreme correlations, as shown in Table7.8. When observing the correlations with
the highest magnitudes, we see that the position of the phone on the table is quite
important as are a few principal components. Note that the temporal feature for the
phone lying on the table is slightly different from the regular label as it is true if it has
been observed within the historical window. We again see that time and frequency
based features play an important role.

7.10.2.3 Tuning Parameters

For tuning the parameters we take the same approach as we have considered before,
namely do a grid search over parameter values that are potentially suitable. We again
use cross validation since our learning algorithms do not care about the order anyway
(this will change in the next chapter). An overview of the algorithms we use (again,
all of those that we have explained and can be used for solving a regression problem
have been included) and the parameter values that are part of the grid search are
shown in Table7.9. We use support vector regression without a kernel function due

http://dx.doi.org/10.1007/978-3-319-66308-1_3
http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_5

160 7 Predictive Modeling without Notion of Time

Table 7.8 Ten most
important features using
Pearson correlation

Feature Importance

temp_pattern_labelOnTable 0.6158

labelOnTable 0.6158

temp_pattern_labelOnTable(b)labelOnTable 0.6158

pca_2_temp_mean_ws_120 0.5265

pca_1_temp_mean_ws_120 0.5221

acc_watch_y_temp_mean_ws_120 0.5022

pca_2 0.4980

acc_phone_z_temp_mean_ws_120 0.4970

gyr_watch_y_pse −0.5368

gyr_watch_x_pse −0.6419

Table 7.9 Algorithm variants and parameters varied for the regression problem

Algorithm Variant description Parameters varied

Neural Network
(NN)

Mutli-Layer Perceptron with 1 or 2
hidden layers and an identity
activation function and one output
node per class

hidden layer composition: {single
layer with 5, 10, 25, or 100
neurons, two layer with 100 and 5
neurons or 100 and 10}
maximum iterations: {1000, 2000}

Support Vector
Regression (SVR)

Linear SVR (no kernel function) maximum iterations: {1000, 2000}
C: {1, 10, 100}
tolerance = {0.001, 0.0001}

K-Nearest Neighbor
(KNN)

KNN model using simple euclidean
distance

k: {1, 2, 5, 10}

Decision Tree (DT) Decision tree algorithm following
the CART approach with the mean
squared error as a splitting criterion

minimum samples per leaf:
{50, 100, 200}

Random Forest (RF) Basic Random Forest approach
with the mean squared error as a
splitting criterion

minimum samples per leaf:
{50, 100, 200}
number of trees: {10, 50, 100}

to the lengthy runtimes. We again average the performance of the random forest and
the neural network over five runs.

7.10.2.4 Results

Table7.10 shows the mean of the squared errors we have obtained for the time points
in the test set, and the standard deviation over these squared errors as well. This
gives an impression on the variability we see in our predictions over the different
time points. Figure7.18 shows the mean squared errors and their standard deviations
for the test set. The results substantially differ from the classification task, for which

7.10 Case Study 161

Ta
bl
e
7.
10

Pe
rf
or
m
an
ce

of
al
go
ri
th
m
s
on

he
ar
tr
at
e
re
gr
es
si
on

ta
sk

(N
N

=
N
eu
ra
lN

et
w
or
k,

R
F

=
R
an
do
m

Fo
re
st
,S

V
R

=
Su

pp
or
tV

ec
to
r
R
eg
re
ss
io
n,

K
N
N

=
K
-N

ea
re
st
N
ei
gh
bo
r,
D
T

=
D
ec
is
io
n
T
re
e)

A
pp
ro
ac
h

N
N

R
F

SV
R

K
N
N

D
T

Fe
at
ur
es

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

T
ra
in
in
g

Te
st

In
iti
al
se
t

72
5.
3

(1
00
9.
3)

15
84
.6

(1
41
7.
6)

58
2.
5

(8
57
.1
)

15
48
.0

(1
34
6.
5)

11
55
.8

(1
21
6.
8)

13
03
.3

(1
06
7.
2)

18
6.
8

(5
74
.1
)

23
09
.7

(2
02
7.
9)

54
2.
8

(8
55
.8
)

14
96
.7

(1
26
8.
4)

C
ha
pt
er
3

71
6.
3

(9
71
.6
)

15
10
.0

(1
33
3.
6)

47
6.
0

(8
00
.9
)

17
50
.4

(1
50
0.
1)

16
00
.2

(4
78
5.
8)

14
65
.2

(1
60
9.
4)

18
6.
8

(5
74
.1
)

23
09
.7

(2
02
7.
9)

53
7.
2

(8
50
.8
)

15
01
.4

(1
28
2.
2)

C
ha
pt
er
4

52
3.
6

(8
46
.2
)

19
68
.0

(2
80
1.
3)

15
.1

(4
1.
6)

13
10
.3

(1
12
9.
2)

15
16
.1

(2
78
3.
7)

19
67
.4

(3
95
0.
7)

13
4.
2

(4
73
.6
)

22
59
.0

(1
84
8.
2)

36
8.
2

(6
43
.8
)

13
17
.0

(8
26
.8
)

C
ha
pt
er
5

55
7.
7

(8
61
.5
)

20
14
.7

(2
11
4.
9)

7.
0

(2
1.
1)

13
84
.8

(1
29
2.
9)

12
11
.8

(2
05
1.
6)

19
97
.2

(3
24
3.
5)

13
4.
2

(4
73
.6
)

22
59
.0

(1
84
8.
2)

36
8.
2

(6
43
.8
)

13
17
.0

(8
26
.8
)

Se
le
ct
ed

fe
at
ur
es

76
8.
9

(1
36
9.
2)

28
25
.3

(2
85
5.
4)

62
0.
7

(1
10
9.
3)

26
14
.8

(2
61
3.
4)

80
8.
5

(1
90
9.
1)

25
98
.2

(2
94
4.
2)

28
6.
1

(7
19
.9
)

25
71
.1

(2
89
6.
0)

53
8.
6

(1
03
9.
8)

27
40
.0

(2
87
8.
4)

http://dx.doi.org/10.1007/978-3-319-66308-1_3
http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_5

162 7 Predictive Modeling without Notion of Time

Fig. 7.18 Performances (mean squared error) on test set, including standard deviation

we performed really well. We observe that some algorithms are able to predict the
heart rates (random forest and the k-nearest neighbor) with a very low error on the test
set (though the standard deviations are generally very high, caused by several very
wrong predictions). The generalizability is unfortunately very limited when we look
at the performance obtained on the test set. Hence, we overfit towards the training
data. Given the consistent lack of performance this likely caused by an insufficiently
representative training set. Additionally, external influences of the heart rate might
not be represented in our features. If we look at the figures of our dataset we have
shown earlier we can in fact see this. For instance, for the walking activity in the
training set we see a reasonably low heart rate while we see an elevated heart rate
in the test set. The other sensory values that are used as a predictor are, however,
quite similar over both periods. Hence, our model cannot predict this well. When we
study what features are most predictive we observe no consistent patterns over the
different algorithms.

Let us dive into one of the approaches in a bit more detail. We select the random
forest with the features from Chap.5 (good performance on training and test set).
The best parameters found are 10 trees, and a minimum of 10 samples per leaf in the
tree. The key predictors used in the random forest are shown in Table7.11. We see
very diverse predictors, although the temporal predictors do play quite a dominant
role. Figure7.19 shows the performance of the random forest on both the training
and test set. We see that it is able to reproduce the training set quite accurately while
the predictions on the test set are indeed pretty bad, although some of the sudden
changes are predicted correctly. Ideally, we would have more data over a longer
period, although we would still expect the prediction to be quite difficult due to the
huge variability in the heart rate in pretty similar situations.

http://dx.doi.org/10.1007/978-3-319-66308-1_5

7.11 Exercises 163

Table 7.11 Feature importance Random Forest

Feature Importance

acc_watch_y_temp_mean_ws_120 0.4631

press_phone_pressure_temp_mean_ws_120 0.1398

mag_watch_x_temp_mean_ws_120 0.0465

temp_pattern_labelEating(b)labelEating 0.0404

mag_watch_y_temp_mean_ws_120 0.0385

temp_pattern_labelEating 0.0383

labelEating 0.0382

pca_4_temp_mean_ws_120 0.0208

pca_7 0.0131

pca_7_temp_mean_ws_120 0.0112

Fig. 7.19 Performance training and test set best performing model for regression task

7.11 Exercises

7.11.1 Pen and Paper

1. Imagine that we have a dataset with instances covering measurements that have
been obtained using different mobile phones. What would your learning setup
be? Will you just consider the dataset as a whole, or would you split it up? Take
the learning setups we have considered into account.

2. Give an overview of the complexity of the following learning algorithms we
have presented in this chapter: neural networks, support vector machines (with
and without kernel), k-nearest neighbor, decision trees, and naive bayes. Do this

164 7 Predictive Modeling without Notion of Time

for the training process for a classification problem and express the complexity
in terms of the number of instances N and the number of features p.

3. Setting the parameter values of the learning algorithms properly is an important
step to obtain good results (we have seen that in our case study), but trying out a
lot of values might be very time consuming. Sometimes some rough guidelines
are however available. Try to find a guideline on the number of neurons to use
for a simple multi-layer perceptron network.

4. While back propagation is a very popular algorithm to train a neural network, it
does come with some severe problems. List two disadvantages of the algorithm
and provide a solution to each of these problems from the literature.

5. It is known that normalization of the input and output of the neural network is
generally a good idea (although we did not fully do it in this case), explain why.

6. In our explanation of support vector machines we mentioned the existence of
kernel functions. Also in deep neural networks and other approaches these are
commonly seen. List at least three kernel functions and explain their properties.

7. Support vector machines are currently the algorithm of choice in the domain of
text mining, why would this be the case? (hint: think of the number of attributes
we are likely to face with text mining).

8. If we have lots of features (i.e. p is large) nearest neighbor approaches tend to
perform relatively poor compared to model-based approaches. Explain why this
is the case.

9. Decision trees are known to be prone to overfitting. List and explain three ap-
proaches that could help us overcome this problem.

10. In our explanation of decision trees we have focused on the information gain for
classification problems. There are however ample alternative splitting criteria.
Find at least two other splitting criteria for a decision tree used for classification
problems. Explain in detail how they work.

11. Naive Bayes thanks its name to the naive assumption that features are indepen-
dent. Provide a concrete example in the context of the quantified self where this
assumption is clearly violated.

12. Assuming thatwewould have the perfect training set for a specific problemwhich
provides us with rich enough information to generate a highly generalizedmodel
on, would we need the concept of bagging?

13. Feature selection can be very useful. Explain how feature selection relates to
overfitting.

7.11.2 Coding

1. In our setup for the activity recognition within our crowdsignals dataset we have
ignored the cases that either contained two labels or had an unknown label: we
simply removed them from our dataset. Experiment with the dataset in case we
would not throw these out, what is the impact on the performance?

7.11 Exercises 165

2. For now we have studied a simple learning setting with data of just one person.
Consider the dataset you have previously identified coveringmultiple individuals.
We assume that we are going to learn to predict unseen data of known users. We
could do this in two ways: (1) generate separate models for each individual on
the training data of that individual and predict the unseen data, or (2) generate
a single model across the training data of all individuals and use that to predict
the unseen data of each individual. Implement the two approaches for your own
dataset, summarize the results, and draw conclusions on which approach is most
suitable for your specific dataset.

3. Similarly to what we have done for the crowdsignals dataset, apply the learning
algorithms to the dataset you have collected yourself and predict the activity.
Compare the results in terms of accuracy. Do you find the same learning algo-
rithms on top? And how do the results compare to what we have found for the
crowdsignals dataset?

4. Make your own implementation of a Hoeffding tree which we have explained in
this chapter. Compare the computational time required to run the algorithm and
the resulting tree to a “standard” decision tree algorithm.

5. Compare backward to forward selection using one of your datasets. Are the same
attributes selected for the two approaches? If there are major differences, can you
explain why these differences occur?

Chapter 8
Predictive Modeling with Notion of Time

In our previous chapter we have looked at a variety of classification and regression
algorithms. The approaches did however not consider the notion of time explicitly,
which is a shame, because there might be valuable information. Thinking of Bruce,
his past mood ratings over the last days might together be very predictive for his
mood tomorrow, or for Arnold his progress during the past days could be indicative
for his performance tomorrow. Although we were able to derive temporal features
from our original sensory data, it might be much more natural to take these temporal
aspects into account in the learning algorithm explicitly, right? Well, you are in luck
because we are going to discuss these temporal learning algorithms in more depth in
this chapter.

Consider Fig. 8.1. We see the mood of Bruce plotted over time together with the
value for the activity level. We see that a rise in activity level results in delayed
increase in the mood level. Furthermore, we see that certain days of the week gener-
ally have higher mood and activity levels than others. Let us look at the approaches
we can use to predict these types of patterns, but not before we again discuss the
learning setup.

8.1 Learning Setup

For this case,we can use a learning setupwhich is verymuch like the onewedescribed
in the previous chapter (in Table7.1). Of course, in this case we only consider the
temporal column (i.e. we assume an XT). Most of the models we will treat assume
a single temporal sequence of values to learn from (i.e. they focus on the individual
level). It is however possible to feed multiple temporal sequences and minimize the
error across all those temporal sequences.

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_8

167

http://dx.doi.org/10.1007/978-3-319-66308-1_7

168 8 Predictive Modeling with Notion of Time

Fig. 8.1 Example dataset Bruce visualized

8.2 Time Series Analysis

Classical time series analysis [31, 34, 107] provides tools that can help us to find
regularities and trends in temporal data. For example, we might observe Bruce’s
mood to vary periodically over the course of a week. OnMonday and Tuesday Bruce
is always somewhat depressed as many people are, while his mood improves over the
following weekdays. At the same time, Bruce is continuously improving his mental
health through smartphone based E-Mental Health interventions. So, in addition to
the weekly pattern Bruce’s mood show a long term increase.

Temporal patterns can be analyzed on different time scales. While the previous
example has a time scale of days or weeks, periodicity can occur on much shorter
time scales. Think for example of Arnold doing his favorite track—the accelerometer
data will exhibit a strong periodicity with a frequency around 1 or 2Hz. And there
are even shorter time scales, for example if we want to analyze sleeping patterns
using the microphone of a smartphone periodicities occur at frequencies between 1
and 5000Hz [56]. In Sect. 4.4.2 we explored the Fast Fourier Transformation which
analyzed the spectral components of a signal in the frequency domain. In contrast,
classical times series analysis studies a signal in its time domain.

In general, the goals of time series analysis fall into one of the following categories:
(i) understanding periodicity and trends, (ii) forecasting, and (iii) control (i.e. change
the course of a temporal pattern). Even though time series analysis is awell elaborated
and rich field (and to summarize the concepts in one section is therefore challenging),
we believe that it is valuable for the analysis of quantified self data to have a basic
understanding of the concepts and tools.

http://dx.doi.org/10.1007/978-3-319-66308-1_4

8.2 Time Series Analysis 169

8.2.1 Basic Concepts

Time series and their variations can be decomposed in three components: First,
periodic variations might be due to a daily, weekly, monthly, or annual seasonality
as discussed in the mood example of Bruce. Periodic variations can also result from
other underlyingmechanisms, e.g. the physics of running as in the example ofArnold.
Second, a long-term trend in the data describes how its mean evolves over time.
As you can imagine, depending on the specific context, it has to be defined what
long-term means and what form a trend might have—it does not always have to be
linear. Third, after removing the periodic component and the trend we are left with
irregular variations. Residuals can be due to random noise or some other unknown
and irregular causes.

This leads us to an important characteristic of a time series: stationarity. It is
beyond the scope to formally introduce stationarity as a probabilistic concept.1 We
refer the interested readers to text books such as the one by Chatfield [34]. Here, we
choose a more intuitive and data-driven approach to understand stationarity. We call
a time series stationary if (i) trends and periodic variations are removed and (ii) if
the variance of the remaining residuals is constant over time. This means that both
the expected mean of a time series as well as its variance are constant. As we will
see stationarity is a major prerequisite (or intermediate step) for many methods in
time series analysis.

Let us look at a univariate time series xjt . For the sake of a concise notation we
will drop j in the following consideration - so keep in mind, that in this section xt
does not refer to a vector with values for all attributes, but is the time series for one
of the attributes.

In a more general definition of stationarity it is not only the variance that has to
be constant over time but also the lagged autocorrelation which can be defined as

rλ =

N−λ∑

t=1
(xt − x̄)(xt+λ − x̄)

N∑

t=1
(xt − x̄)2

(8.1)

where x̄ is the sample mean of the time series xt . Autocorrelation with lag λmeasures
(as the name suggests) the correlation between a time series and a shifted variant (byλ

time steps) of itself. It is an important measure that can provide clues to an underlying
model that describes the data well and characterizes the predictability of a time
series. Figure8.2 shows three example time series and the corresponding empirical
autocorrelation plots, also called correlograms. Figure8.2a represents random noise,
where each data point is independent and identically distributed from the samenormal

1It should be noted that it is not the time series itself that is stationary, but an underlying probabilistic
model that is assumed to generate the time series. Nevertheless, in practice the term stationarity is
often tagged to a time series. See Sect. 8.2.3.

170 8 Predictive Modeling with Notion of Time

Fig. 8.2 Lagged Autocorrelation for various time series: a random, b moderate autocorrelation,
c non-stationary

distribution. As you would expect there is no autocorrelation for λ > 0. In Fig. 8.2b
we introduce somememoryover a couple of time stepswhich leads to autocorrelation.
How we can calculate values using such a memory will be discussed in the next
sections. Finally, Fig. 8.2c displays a time series that is generated by calculating the
cumulative sum of the time series under (a). Because time series (c) exhibits a linear
trend, you see immediately that it is non-stationary. In the next section we learn how
we can model trends and periodicity of time series.

8.2.2 Filtering and Smoothing

To analyze trends in time series, we start with a simple approach that is close to what
we have already seen in Chap.2. Remember, what we did in order to reduce the noise
of the raw data: We defined a regular spaced time grid with a time window Δt and
aggregated the unevenly spaced (raw data) measurements accordingly (XT). As a
result we were able to not only reduce the variability of data and to handle missing
values but also to bring the data into a rectangular shape as it is useful for a variety
of machine learning algorithms discussed in Chap. 7.

http://dx.doi.org/10.1007/978-3-319-66308-1_2
http://dx.doi.org/10.1007/978-3-319-66308-1_7

8.2 Time Series Analysis 171

We can generate a new time series zjt that is a linear transformation of an existing
time series (for instance the point xjt), by defining

zt =
q∑

r=−q

arxt+r (8.2)

where ar is a weight vector and q is the number of measurements in each direction
from t that are taken into account when generating the new time series zt . Such a
transformation is called a linear filter. Linear filters are both useful and powerful. Let
us look at a simple case where ar = (2q + 1)−1 for r ∈ {−q, . . . , q} and ar = 0 for
all other r. As a result zt is the average of the 2q + 1 adjacent measurements of xt ,
the so calledmoving average. If we believe that the measurements close to t are more
important for the newly generated time series we can simply increase the weights
around t. For example we could give ar a triangular shape:

ar =
{

q−|r|
q2 −q ≤ r ≤ q

0 otherwise
(8.3)

Another common approach is exponential smoothing

ar = α(1 − α)|r|

2 − α
(8.4)

where α is a constant with 0 < α < 1. The smaller we choose α the more importance
is given to past and futuremeasurements (Fig. 8.3).Often exponential smoothing only
takes past measurements into account (enables online processing of data streams).

Do you remember what we wanted to do? Right, find and remove a trend. An
effective way to do so, is to use a technique called differencing. Differencing is a
special and at the same time simple filter with a0 = 1 and a1 = −1 and all other
ar = 0 which results in zt = xt − xt−1 = ∇xt . Here, ∇ is defined as the operator that
calculates the difference between two adjacent measurements. If we apply the ∇-
operator multiple times, e.g. d times, we say that we apply d-th order differencing,
e.g.

∇2xt = ∇xt − ∇xt−1 = xt − 2xt−1 + xt−2 (8.5)

To see why differencing is able to remove trends, we have to understand that the
contribution of a long-term trend to two adjacentmeasurements is quite similar. Thus,
subtracting the two measurements removes the trend. A drawback of differencing is
that the variance of the detrended time series increases. This is true because xt−1 is
not a very good approximation of the trend component. However, we can interpret
zt as a proxy for the trend. Thus, after taking the difference xt − zt only the local,
e.g. periodic, variation remains. This corresponds to a new linear filter with weights
br = −ar for all r except r = 0 for which br = 1 − ar . We apply this by using our
exponential smoothing filter (Fig. 8.4).

172 8 Predictive Modeling with Notion of Time

Fig. 8.3 Exponential Smoothing of the time series from Fig. 8.2. Black dotted (red dotted) line
corresponds to α = .2 (α = .05)

Fig. 8.4 Black solid line = example time series, red dashed = trends through exponential smooth-
ing, blue dotted line = detrended time series

8.2 Time Series Analysis 173

“Art” is a termwe use in the subtitle of this book—here we have another example:
it is a kind of an art to say what the q and ar should be to find trends, it depends on our
understanding of the problem at hand. For example, if you want to use a smartphone
to detect stepping patterns of person that has her phone in the pocket, there might be
periodic pattern with a frequency of about 1Hz. At the same time the orientation and
position of the smartphone in the pocket of that person might vary over longer time
intervals. To extract the stepping pattern, we would like to remove changes that are
due to the changing orientation of the smartphone, so we would use a time interval
for smoothing that is significantly larger than 1s. We will return to this in an example
later.

8.2.3 Autoregressive Integrated Moving Average
Model—ARIMA

In this section we will take a more conceptual approach to modeling time series. We
do so because we ultimately want to estimate a model that describes the empirical
data well and that can be used to predict future data points.

We can think of time series as being generated by a stochastic process, that is a
mapping of time point t to a probability distribution Pt . It is this probability distribu-
tion that is assumed to generate the actual measurement xt . Based on this distribution
we can define the mean function

μ(t) = E[Pt] (8.6)

and the autocovariance function

γ (t1, t2) = E[(Pt1 − μ(t1))(Pt2 − μ(t2))] (8.7)

Following up on our discussion along the empirical Eq. 8.1 we say a stochastic
process Pt is stationary, if the mean function μ(t) = μ is constant over time and the
autocovariance function only depends on the time difference λ = t2 − t1

γ (t1, t2) = γ (λ) (8.8)

Let us start with a discrete random process for whichWt (sometimes called white
noise, hence the symbol W) is the normal distribution with variance σ 2

W and all the
observed data points are independently drawn from this distribution (independent and
identically distributed, i.i.d.). Since the observations are statistically independent, we
know that only the expected variance is non-zerowhile all other autocovariance terms
are zero.

174 8 Predictive Modeling with Notion of Time

γ (λ) =
{

σ 2
W λ = 0

0 otherwise
(8.9)

This situation is shown in Fig. 8.2a. Based on the purely random process we can
define what is called a random walk process Pt that follows

Pt = Pt−1 + Wt (8.10)

Generating data based on this model leads to a drift of the observations drawn from
Pt . Neither the mean function nor the variance is constant over time as you can
guess from Fig. 8.2c. This is why the stochastic process of a random walk cannot be
stationary.

Another important stochastic process is the moving average (MA) process. Basi-
cally it applies a sliding window of fixed size q and calculates the weighted mean of
adjacentmeasurements for every t. Consider a purely randomprocessWt as discussed
above. Then

Pt = θ0Wt + . . . θqWt−q (8.11)

is an MA process of order q and with constant coefficients θi. We can simplify
Eq.8.11 by using the backshift operator B that acts on Wt as follows: Wt−1 = BWt

which in general leads to Wt−n = BnWt . With θ(B) = θ0 + θ1B + . . . θqBq Eq.8.11
simply becomes Pt = θ(B)Wt

An MA process is shown in Fig. 8.2b. As you can see, there is clearly autocor-
relation between adjacent measurements, e.g. Pt and Pt−1, which is not surprising
given that in this case q terms of the sum in Eq.8.11 are identical (not accounting
for different θi). It can be shown that consistent with Fig. 8.2b the autocovariance
function is

γ (λ) =

⎧
⎪⎨

⎪⎩

0 λ > q

σ 2
W

q−λ∑

i=0
θiθi+λ 0 ≤ λ ≤ q

(8.12)

Knowing the autocovariance function γ (λ) already tells us a lot about the MA
process. E.g. the cut-off happens at lag q which is the order of the MA process.
However, as you can explore in the exercises, different MA processes can have the
same autocovariance function. So, it is not enough to know the autocovariance func-
tion in order to unambiguously find the underlying time series model.

Next we want to look at autoregressive processes (AR). If Wt is a purely random
process then an AR process follows

Pt = φ1Pt−1 + . . . φpPt−p + Wt (8.13)

8.2 Time Series Analysis 175

where φi are constants (with φp �= 0). Using the backshift operator we can elegantly
rewrite Eq.8.13 as

φ(B)Pt ≡ (1 − φ1B − · · · − φpB
p)Pt = Wt (8.14)

Even though it takes some careful mathematical considerations, you can intuitively
imagine that Eq.8.14 can be rewritten as

Pt = φ−1(B)Wt = (1 + θ1B + θ2B
2 + . . .)Wt (8.15)

which can be proven using the Taylor expansion of (1 − φ1B − · · · − φpBp)−1. This
is an interesting representation of an AR process because it shows that an AR process
of finite order p can be represented as an infinite order MA process (compare with
Eq.8.11). The opposite is also true for a finite order MA process—it can be repre-
sented as an infinite order AR process. This is referred to as the duality of AR and
MA processes [95].

Why is that interesting? Since AR processes can be represented as MA processes
and vice versa, it would be sufficient to only use one of them to fully describe a
process that originally was generated by a mixture of both an AR and a MA process.
However, we are interested in finding a process model that is as simple as possible
in terms of the number of unknown parameters (principle of parsimony). For this
purpose we mix an AR process of order p and a MA process of order q into an
ARMA(p,q)

Pt = φ1Pt−1 + . . . φpPt−p + Wt + θ1Wt−1 + . . . θqWt−q (8.16)

When we turn to real time series, e.g. the mood of Bruce, we often observe that
they are not stationary and thus, cannot bemodeled by anARMAprocess. One reason
for that can be a drift in the mean. In the previous section we applied differencing to
remove drifts of themean. That is what the autoregressive integrated moving average
(ARIMA) model does by replacing Pt in Eq.8.16 by Vt = ∇dPt = (1 − B)dPt . The
term “integrated” comes from the fact that Vt has to be summed up to yield the
original, non-stationary, time series Pt . The order of differencing d enables us to not
only remove linear trends but also trends that can be approximated by higher order
polynomials. We say ARIMA-models are of order (p, d, q).

ARIMA models can be extended to also account for seasonal variations, e.g.
the weekday dependency of Bruce’s mood. The basic idea behind it is not to apply
the differencing to neighboring measurements but to those measurements which are
separated by the seasonal period, in this case 7 days. In addition, we can include latent
variables (our attributes) to predict the values of our time series in combination with
the techniques we have discussed in the section. This is called the ARIMAX model.
It is beyond the scope of this book to discuss the details of seasonal ARIMA and
ARIMAX models (see the seminal textbook from Box and Jenkins [26]).

176 8 Predictive Modeling with Notion of Time

With ARIMA processes we have a powerful instrument to describe models that
generate univariate time series data. In the next section we will provide you with
basic ideas how to estimate ARIMA models.

8.2.4 Estimating and Forecasting Time Series Models

Let us assume we know that a time series xt was generated by an AR process of order
p with mean equal to 0. Then we can use Eq.8.13 to find least square estimates for
φ1, . . . , φp by minimizing

S =
N∑

t=p+1

(xt − φ1xt−1 − · · · − φpxt−p) (8.17)

We refrain from going through the details of the solutions for specific values of p
as they can be found in dedicated textbooks (see for example p. 121 and further
in [107]). But one important question is still open: How do we find the right value
for order p? To answer this question, the so-called Partial Autocorrelation Function
(PACF) is used. Basically, the PACF of order p measures the correlation between
two measurements xt and xt+p that is not already captured by the AR(p-1) process
[34]. That said, the empirical PACF plot of a time series that was generated by an
AR(p) process cuts off at lag p and therefore presents a clue to what the order of the
AR process is.

When it comes to fitting a pureMAprocess, finding the right order q of the process
is reasonably easy: As we have argued before, the Autocorrelation Function (ACF)
cuts off at lag q. At the same time, estimating the parameters of the generating MA
process is more difficult and found by employing numerical techniques. The same
is true for ARMA (and ARIMA) processes. To estimate a non-seasonal ARIMA
process a grid search over the 3 parameters (p, d, q) can be performed and evaluated
along typical criteria for model selection such as Akaike’s Information Criterion
(AIC) or Bayesian Information Criterion, accounting for both, the goodness of fit
and the number of independent parameters. We will explore this in the case study.

We engage in time series analysis to not only understand the different components
that are likely to have generated the data we observe but also to predict what happens
in the near future. Once we have estimated the parameters of an ARMA process
we can use Eq.8.16 to predict future measurements. Due to the white noise Wt the
prediction quickly becomes uncertain and approaches the mean of the time series
under consideration. In addition to that we have to account for seasonal trends in the
data. As we will see in the case study, this can be tricky.

A concluding remark before we jump to a concrete example: time series analysis
is an active field of research and extensively used in practice. So, there is a wealth
of other topics related to time series analysis that are covered in other chapters
and sections of this book such as Kalman Filtering (3.3), Fourier Transformation

http://dx.doi.org/10.1007/978-3-319-66308-1_3

8.2 Time Series Analysis 177

(4.2.1), and to some extend state-space-models (8.4). For other topics that are equally
important for time series analysis such as multivariate time series (VARMAmodel),
long-memory models, or Bayesian analysis of time series we refer to standard text
books (e.g. [31, 34, 43, 107]).

8.2.5 Example Application

In order to understand the application of the times series approachwe have discussed,
let us look at an example. We focus on finding the orientation of a smartphone based
on the accelerometer data and predicting future accelerometer data.

8.2.5.1 Finding the Smartphone Orientation

Wehave exploreddifferent techniques offilteringwhich canbeuseful for differencing
and smoothing. Figure8.5 demonstrates the effect of a simple filter (a0 = 1 and
a1 = −1). The left/right panel show the original/filtered data (granularity of 50ms).
The de-meaning of the data comes with a price: It increases the variance of the data.

Let us use filtering to get a rough estimate of the orientation of the smartphone.
This can be done because gravitation introduces a natural coordinate system that
is detected by the smartphone’s accelerometer sensors. To do so, we apply a filter
(a−100 = · · · = a100 = 1/201) to the accelerometer data (along the three axis x, y, z)
that is a sliding window over 201 adjacent measurements. As a result, this sliding
window calculates the mean at each point in time. While the grey line in Fig. 8.6
corresponds to the original data (50msgranularity) and exhibits significant variability,
the blue line represents the filter result. The red line indicates the norm of the 3D
acceleration vector. If we would change the orientation of a smartphone slowly

Fig. 8.5 Differencing accelerometer data with a simple filter (a0 = 1 and a1 = −1)

http://dx.doi.org/10.1007/978-3-319-66308-1_4

178 8 Predictive Modeling with Notion of Time

Fig. 8.6 Unfiltered and filtered accelerometer data

we would expect the red line to equal the gravitational acceleration of the earth
(g ≈ 9.81m/s2). This is roughly the case. Deviations are due to several reasons: (i)
rotational movements can increase the norm of the acceleration vector, (ii) free fall
decreases it (typically not a good state for a smartphone and/or its owner, especially
if you think of the time window size), and (iii) measurement errors (see for example
at time 21:10, this decrease is due to a cut off at 20 m/s2 in the raw data).

8.2.5.2 Predicting Accelerometer Data

Let us turn the application of a seasonal ARIMA model. We start by analyzing a
fragment of 4000 accelerometer datameasurements (≈20s)whichwe evenly space at
a 10ms level to accommodate for a proper time series application. The corresponding
ACF (Fig. 8.7) exhibits a slowly decaying periodic autocorrelation. Together with a
visual inspection of the raw data (Fig. 8.8) we see a strong seasonal component
without a drift in the mean.

Wewant to ignore the seasonal component first and fit the best possible ARMA(p,
q) process by applying a grid search over (p, q). The objective criterion is tominimize
the AIC. This results in p = 3 and q = 2. Figure8.8 shows the initial time series and
the fitted values. It looks like an exceptional result which you often see in time series
analysis, until you understand that the fitted values are the so-called one-step-ahead
prediction. So you assume, that you have all measurements up to a time t − 1 and
you want to predict xt which intuitively should be easy if the time series is smooth
enough which it is.

For some control tasks that might be a helpful result. However, typically we are
more interested in long-term prediction based on the estimated model. Figure8.9

8.2 Time Series Analysis 179

Fig. 8.7 Autocorrelation Function (ACF) for a set of 2000 raw data measurements (≈10s) and
Partial Autocorrelation Function (PACF) for the same set of raw data

Fig. 8.8 The blue line represents 500 measurements of the original data, the red line the one-step-
ahead-prediction

180 8 Predictive Modeling with Notion of Time

Fig. 8.9 The blue line indicates the original time series that was used to estimate the ARMAmodel.
The red line is the “long-term” prediction, the shaded area its uncertainty

shows that we do not do very well on this task. Already, after a few time steps
the prediction uncertainty increases dramatically and we are way off, we basically
predict the mean.

So, what went wrong? As we said before, the original time series exhibits a
strong seasonality which has to be accounted for when fitting the model, here a
seasonal ARIMA (SARIMA)model. We can decompose our time series in a seasonal
component and a residual part (difference between the measured values and the
seasonal component). The ARIMA model can then focus on the residue. If we look
at Fig. 8.8 we have seen before, we observe a recurrent pattern about every second
(1.07 s to be precise). Figure8.10 shows the decomposition. We can see that the
seasonality component accounts for a large part of our data.

We again take p = 3 and q = 2. As we can see in Fig. 8.11 we have a decent fit.
If we want to predict measurements that are even further in the future, again the
prediction levels are off and the interval of uncertainty increases. The reason for that
is, that the long-term lagged autocorrelation decreaseswith the lag, so that predictions
become more and more uncertain. Overall, you can see that the instruments we
have described are very helpful when it comes to predicting time series with some
regularity.

8.3 Neural Networks 181

Fig. 8.10 The data decomposed in a seasonality and a residual part

Fig. 8.11 The blue line indicates the original time series that was used to estimate the SARIMA
model. The red line is the “long-term” prediction, the shaded area its uncertainty

8.3 Neural Networks

We have already seen several variants of neural networks. Here we will focus on
neural networks that can explicitly deal with temporal data—the so-called recurrent
neural networks. We will discuss two types: the most basic variant that underlies

182 8 Predictive Modeling with Notion of Time

most popular recurrent neural network approaches and echo state networks. We
describe the latter because they are very different from other types of recurrent
neural networks.

8.3.1 Recurrent Neural Networks

Figure8.12 shows an example of a recurrent neural network. Compared to the neural
network examples we have previously considered, recurrent neural networks can
contain cycles that feed the values of a neuron at a previous time point (assuming
discrete time steps) back into the network. Hence, we create a form of memory. In
Fig. 8.12, the output of the network (Y1) is fed back as input. Time is expressed by
means of the brackets behind each attribute, so we predict the next value Y1(t + 1)
based on the previous values of the input (X1(t), . . . ,Xp(t)) and the previous value
of the output (Y1(t)). Precisely what values are fed back into the network depends
on design choices. In the network at hand it only concerns the output, but also values
of hidden neurons could be fed back to the input or to another hidden neuron. Let us
consider the example shown in Fig. 8.1 again. We might want to predict the mood
of Bruce based on the activity level. We can build a recurrent neural network for
predicting mood at the next point in time (i.e. t + 1). As input for the model, we use
the previous mood prediction by the network (Y1(t)) and the other measurements at
the previous time point (X1(t), . . . ,Xp(t), in this case only activity level).

A crucial question is how we train these networks. We have seen the backpropa-
gation algorithm before, but that does not take the notion of time into account. With
this new setting our predictions not only depend on the inputs of the network but
also on the values of neurons at the previous time step. As a consequence, we cannot
update the weights based on the observed error by solely looking at the state of a
network at a single time point. So how do we solve this problem? Well, it works less
complex as you might expect: we “unfold the network through time”, this means

Fig. 8.12 Simplified
recurrent neural network

8.3 Neural Networks 183

Fig. 8.13 Unfolded recurrent neural network

that we create an instance of the network for each previous time point, and connect
these. Normally, we set a maximum number n of time points we consider in history,
where n is significantly smaller than the number of instances N . The algorithm is
naturally called backpropagation through time (see e.g. [126] for a more extensive
discussion).

An example is shown in Fig. 8.13 where wemove n steps back in time. This means
that we end up with a network consisting of n subnetworks representing one point
in time. This combined network is without cycles. We also do this for cases where
not only the output is fed back as input, but other recurrent connections exist. This
trick allows us to use backpropagation again! Of course, we do have to include the
notion of time that we have now added. The precise update rule is expressed below.
Note that we use brackets behind some variables to express time explicitly to stay in
line with our previous explanation of the backpropagation algorithm. Furthermore,
similar to the backpropagation explanation we use brackets in superscript to identify
the neuron for ŷ.

For weights of non-recurrent connections:

Δwij = ηδj(t)ŷ
(i)
t (8.18)

δj(t) =
{

ϕ′(vj(t))(y
j
t − ŷ(j)

t) if j is an output node

ϕ′(vj(t))
∑k

1(δk(t)wjk) otherwise
(8.19)

For weights of recurrent connections:

Δwij = ηδj(t)ŷ
(i)
t−1 (8.20)

δj(t − 1) = ϕ′(vj(t − 1))
k∑

1

(δk(t)wjk) (8.21)

We see that the update rule remains the same for the non recurrent connections,
although we did explicitly add the time factor to it. For the recurrent connections, we
use a slightly modified version, since we are shifting between networks representing
two different time points. The update of the weight between neuron i (being the
output of a network at the previous time step t − 1) and a node j (being a node in
the network for the time point t) is defined similar to what we have seen earlier. We
do, however, take the calculated output value at the previous time point ŷ(i)

t−1 and the

184 8 Predictive Modeling with Notion of Time

delta of the connecting node j at time point t: δj(t). δj(t − 1) propagates the error
back to the network for time t − 1 from node j connected to the network for time t.

As you can see, we do not explicitly represent the weights by means of time.
However, for each network for a time pointwe do derive an update for theweights.We
will simply sum all updates to derive the new (universal) weight across all connected
networks.

The type of recurrent neural networks we have just explained suffers from some
problems. For example, they have problems representing a long term memory. Vari-
ants have been developed that tackle these issues, and are commonly used in practice.
Examples are LSTM [60] and GRU [37], both have recently been applied success-
fully for example in speech recognition and text analysis. Other application areas
which use data similar to the quantified self context include recommender systems
and user behavior analysis [77]. It is beyond the scope of this book to discuss these
algorithms in detail. We will, however, focus on an alternative approach that takes a
completely different perspective.

8.3.2 Echo State Networks

Although backpropagation through time is quite elegant, it does come at a price: high
computational overhead, and the probability of getting stuck in a local minimum.
More recent developments for learning of temporal patterns using neural networks
include echo state networks [63] as part of field of reservoir computing. The principle
of reservoir computing is to have a huge reservoir of fully connected hidden neurons
with randomly assigned weights. The weights from the input layer to the hidden
neurons (that are again fully connected) are also randomly generated. The only part
that is not set randomly are the weights from the hidden neurons to the output layer.
The connections in the reservoir can be cyclic in the case of echo state networks,
thus allowing for the representation of temporal patterns. The non-cyclic case is
called extreme learning machines. Let us look at the approach in a bit more detail.
Figure8.14 shows an example of an echo state network. Note that we did not draw
all connections from the input to the reservoir and from the reservoir to the output.

Let us specify the network in a formal way. p is the number of input units while
we consider n internal neurons and l output units. Besides xi (our ith training vector)
we specify ri as the vector with the activations of all neurons in the reservoir and ŷi
as the output values. The weights of the neural networks are expressed by means of
matrices:

• Win is an n × p matrix for the weights from the input layer to the reservoir.
• W is the n × n matrix of the internal weights in the reservoir.
• Wout is the l × n matrix that specifies the weights to the connections between the
reservoir and the output.

Sometimes an additional set of connections going back from the output into the
reservoir is considered but we do not take that into account here. As said, Win and

8.3 Neural Networks 185

Fig. 8.14 Echo state network (note that the input layer is fully connected to all neurons in the
reservoir and the same holds for the reservoir with the output layer)

W are randomly initialized and are fixed, while Wout is learned. We can see that
the activation of the network can be calculated as follows (assuming an activation
function ϕ and ϕout for the reservoir and the output layer respectively):

ri+1 = ϕ(Winxi+1 + Wri) (8.22)

ŷi+1 = ϕout(Woutri+1) (8.23)

Ok, so how do we learn? Well, just do the same that we have done before. We can
feed our temporal training data in a time ordered fashion and find a weight matrix
Wout that minimizes the error between the desired outputY and the predicted output
over the entire time series. Usually, the pseudo inverse method is used in the case of
echo state networks. We do specify an initialization period which we do not use in
our training nor in the evaluation of the generalizability upon the test set (the network
needs to stabilize first), this is called the washout time.

Nice, simple, and lean—but does it work well? In fact, it does. It has been shown
to outperform other regression and classification algorithms in a variety of cases.
Furthermore, the computational properties are very nice, and the network is very
expressive (in fact, as expressive as regular neural networks). So where is the catch?
There is a catch when it comes to the initialization of the reservoir. It needs to be
initialized such that the echo state property is satisfied (cf. [62]):

Definition 8.1 Echo state property: The effect of a previous state ri and a previous
input xi on a future state ri+k should vanish gradually as time passes (i.e. k → ∞)
and not persist or even get amplified.

In other words the reservoir should never amplify or let values of states/neurons
fully persist. Otherwise, it will be impossible to learn the temporal patterns we
envision. Unfortunately no formal procedures exist that are guaranteed to give us a
reservoir with the echo state property. However, a heuristic exists that works well in
practice. If you are unfamiliar with the terminology that follows there is no need to

186 8 Predictive Modeling with Notion of Time

worry, just skip the rest of this paragraph then. The initialization considers the eigen
vectors of the matrix W. Once the highest eigen value (also called spectral radius,
noted as ρ(W)) associated with these vectors is such that ρ(W) < 1 we almost
always see that the network satisfies the echo state property. Algorithm 19 (cf. [62])
shows how the matrixW can be initialized in this way.

Algorithm 19: Reservoir initialization procedure
1. Randomly initialize an internal weight matrixW0. W0 should be sparse and have a mean
of 0. The size n reflects the number of training examples N (should not exceed N

10 to N
2

depending on the complexity)
2. Normalize W0 to matrixW1 with unit spectral radius by putting W1 = 1

ρ(W0)
W0

3. ScaleW1 to W = αW1 where α < 1, whereby ρ(W) = α

Then W is a network with the echo state property (“has always found to be”)

The lower the value of the parameter α the faster the dynamics of the reservoir are.

8.4 Dynamical Systems Models

While we have seen models with a lot of expressivity, we started without any knowl-
edge on the precise form of the relationships between the different attributes and
targets: these had to be learned from the data. What if we do have some knowledge
about the formof the relationships, for instance obtained from literature in the specific
domain? Obviously, wewant to exploit this knowledge. An approach to build domain
knowledge-based models that cover temporal relationships are so-called dynamical
systems models. The models represent the temporal relationships between attributes
and targets by means of differential equations (of arbitrary complexity) and assume
only numerical states. An example is illustrated in Fig. 8.15. In the figure, the circles
represent our target concepts (i.e. the Yi’s) while the squares represent the attributes
we want to use to make predictions (i.e. X1, . . . ,Xp). These attributes are seen as
external inputs that can influence our target concepts. To represent the next value of
a certain target concept (e.g. for Y1) we can use the observed values for the attributes
X1, . . . ,Xp at the current time point as well as the current values of our targets. A
directed arrow in Fig. 8.15 indicates that the value of the source of the connection is
used to calculate the value of the target at the next time point.

8.4.1 Example Based on Bruce’s Data

Let us consider an example of a model, and take the one shown in Fig. 8.1 again. We
want to model the relationship between themood and the activity level normalized to
the [0, 1] domain, and consider both as a target for our model. We use one additional

8.4 Dynamical Systems Models 187

Fig. 8.15 Example
dynamical systems model

input, not being a target, namely whether the person went outside of the house during
a day or not represented by 1 and 0 respectively. An example of a simple dynamical
systemsmodel that represents this problem is shown below. Note that we, for the sake
of clarity, use a notation with names in subscript instead of indices in superscript to
identify the variables. We use brackets to denote the time point instead of a subscript
for the same reason.

ŷmood(t + Δt) = ymood(t)+
xoutside(t) · (γ1 · (1 − ymood(t)) · pos(yactivity level(t) − ymood(t))+

γ2 · ymood(t) · neg(yactivity level(t) − ymood(t))) · Δt (8.24)

ŷactivity level(t + Δt) = yactivity level(t)+
(γ3 · (1 − yactivity level(t)) · pos(sin(t − γ4π

γ5
))+

γ4 · yactivity level(t) · neg(sin(t − γ4π

γ5
))) · Δt (8.25)

where

pos(v) =
{
0 v < 0

v otherwise
(8.26)

neg(v) =
{
v v < 0

0 otherwise
(8.27)

While the model might seem complex, it behaves in a reasonably straightforward
way. One of the basic starting points is that we want to keep the values of the states
between 0 and 1. Hence, we can at most increase a state with 1 minus its current
value, and we cannot decrease a state more than its current value. If we look at
the equation for ŷmood , we see that we determine the next value ŷmood(t + Δt) by
taking its previous value, and seeing how its value relates to the activity level. If the
activity level is above the mood, it will increase the mood, otherwise it will decrease

188 8 Predictive Modeling with Notion of Time

Fig. 8.16 Example output using two parameter settings

the mood. Note that this influence only holds in case of an outside activity. For the
activity level, we see that the value increases or decreases based on a sine function.
You can see that a number of parameters are present: γ1 to γ5. We use a fixed step
size Δt as we have seen before.

Figure8.16 shows an example of our model with two sets of parameter settings,
initialized at time point 1 with the same value (though scaled to [0, 1]) as we have
seen in our example figure from Bruce in Fig. 8.1. We assume that all days have at
least one outdoor activity (i.e. Xoutdoor = 1 for all time points). We setΔt to 1 and run
the model for 14 time steps (representing days). This means that we predict the target
values at t + 1 based on the predicted value at time t plus the external inputs. We
see that the parameter values have a huge influence on the predictions in the figure.
The figure on the right is clearly much closer to the measured data. We will discuss
ways to optimize the parameter values next. For some more extensive examples of
dynamical system models that predict human behavior, see e.g. [23–25].

8.4.2 Parameter Optimization

We can use this model to make predictions for the future, even beyond a single time
point. However, we would need to know the value for the external attributes (in this
case Xoutside) as our models depends on that. If we were to predict over multiple time
points in the future without knowing the external output, we could either take an
average value for this, or sample from a distribution that is in line with the previous
observations of the variable.

So where does the machine learning come into play? As said, the setting of the
parameters is crucial and highly dependent on the individual. Machine learning can
help in finding the best settings for these parameters. Hence, we seek parameter val-
ues that minimize the difference between the actual target value and the predicted

8.4 Dynamical Systems Models 189

ones (i.e. y(1), . . . , y(N) versus ŷ(1), . . . , ŷ(N) in our notation with brackets). We
could treat numerous approaches that find the best parameters. We will discuss two
heuristics, namely simulated annealing(cf. [71]) and two variants of genetic algo-
rithms (see e.g. [44] for a broad overview of evolutionary algorithms, including
genetic algorithms). We could again use the quadratic error function of a model with
parameter values λ:

E(λ) =
N∑

t=1

(ŷ(t) − y(t))2 (8.28)

where ŷ(t) is the prediction of the model given λ. We need to find parameter settings
that minimize this error function.

8.4.2.1 Simulated Annealing

When we consider simulated annealing we make random steps in the parameter
space and see whether we make improvements in terms of performance. There is
something smart to it though:moves in the parameter space that do not have a positive
impact on the error are still considered with a certain probability. Doing so, helps us
to explore the parameter space. As the algorithm keeps running, the probability to
accept’negative’moves decreases. This depends on the notion of a temperature—thus
the term annealing. The lower the temperature becomes the lesswe explore the search
space. Consider the Algorithm 20. The algorithm performs a number of iterations
(kmax) and in each iteration tries a new update of the parameter vector λ. When taking
the random steps we need to make sure the parameter values are within the desired
ranges. If the new vector performs at least as good as our current one we take that
as the new current one. If it does not, we accept it with a probability depending
on the current temperature and the parameter kb. This probability decreases when
the temperature decreases (by a factor α which is assumed to be less than 1). The
algorithm is simple and elegant, and in general performs quite well.

8.4.2.2 Genetic Algorithms

An alternative to the simulated annealing scheme presented above are genetic algo-
rithms (GA). They work based on the theory of evolution. While there have been
many advancements in the field (see e.g. [44]), wewill explain only the so-called sim-
ple GA to get a feeling for the type of approach. We follow the explanation of Eiben
and Smith [44]. The basic starting point of the algorithm is a population of candidate
solutions, in our case parameter vectors. In genetic algorithms these candidates are
represented by means of binary strings (the so-called genotype). We can allocate a
number of bits in the string per parameter value. The number of bits depends on the
desired granularity. Assuming we use n bits to represent one parameter value, we

190 8 Predictive Modeling with Notion of Time

Algorithm 20: Simulated Annealing
λcurrent = random
Eprev = ∞
Temp = Tempinit
for k from 1 to kmax do

for i in λ do
λ′
i = λi + random

end
if E(λ′) ≤ E(λcurrent) then

λcurrent = λ′

else if e
(E(λcurrent)−E(λ′))

kbTemp ≥ random(0, 1) then
λcurrent = λ′

Temp = α · Temp
end
return λcurrent

Fig. 8.17 Parameter Vector
genotype

end up with a genotype of length n × |λ|. An example of a bit string representing a
parameter vector λwith two values, each represented by 4 bits, is shown in Fig. 8.17.

We start with a certain random population of these candidates. We then go into an
evolutionary process very much inspired by natural evolution: we perform selection
of parents for a mating pool, perform crossover and mutation, and select a new pop-
ulation for the next generation. This loop continues for a set number of generations.
Let us consider each one of these steps in a bit more detail.

Parent selection: First, we need to select parents for our mating pool. This is done
by means of the assignment of a fitness value to each of our individuals. In our case
this would be the error of the parameter vector on the training set (cf. Formula 8.28).
We select using a so-called roulette wheel technique: we assign probabilities to
individuals being selected based on their fitness. We select the same number of
individuals as the population size.We assign the probability of an individual i (which
represents a parameter vector λi) being selected for a single spin of the wheel as
follows:

Pi = 1 − (E(λi))
∑pop_size

j=1 E(λj)
(8.29)

Crossover: Once we have selected the individuals into the mating pool, we select
pairs of individuals (without using any of them twice) and perform crossover with a
probability pc. Crossover for the simple GAworks with a single point: you randomly
select a point in the bit string and create two children. For child one we take the
first part (before the crossover point) of parent one and the second part (after the

8.4 Dynamical Systems Models 191

Fig. 8.18 Simple GA single
point crossover

crossover point) from the second parent. For the second child we do the opposite.
The process is illustrated in Fig. 8.18. If we do not perform crossover (since pc will
be lower than 1) we take the two original parents.

Mutation: Finally, we perform mutation with a certain probability pm. We do this
on each of the individuals resulting from the previous step. It works by flipping bits
in the bit strings of individuals with probability pm. The final resulting individuals
become the new population.

Abrief summaryof the evolutionary loop for the simpleGA is shown inAlgorithm21.

Algorithm 21: Simple Generic Algorithm
population = random initialization of population with set population size ps
for i from 1 to max_generations do

Select ps parents according to Eq.8.29
Select pairs of parents from the individuals we have selected (without replacement)
Apply crossover to the parents with probability pc or copy the original parents
Apply bitwise mutation with probability pm on the resulting individuals
The individuals we have just created become the new population

end
return fittest individual in the final population

8.4.2.3 Multi-criteria Optimization

The dynamical systems models describe the relationship between multiple target
concepts. Often, trade-offs need to bemade in the setting of the parameters: adjusting
a parameter might improve the predictions on one target, while it worsens them for
another target. If we assume all are equally important, we can just optimize the mean
squared error between the target values using the methods we listed before. If we

192 8 Predictive Modeling with Notion of Time

Fig. 8.19 Error score model instances with Pareto Front

want to study the trade-off between the performance on each of the targets we have
a multi-criteria optimization problem.

If we return to our previous example, we could end up with a series of parameters
settings for γ1 to γ5, where each setting results in an error on the mood target and
an error on the activity level target. We call a model with these parameter settings a
model instance. Hence, we have separate error functions per target:

Etarget(λ) =
N∑

t=1

(ŷtarget(t) − ytarget(t))
2 (8.30)

Wedenote the error of a specificmodel instancewith parameter vectorλ for a target
i as Ei(λ). We assume q targets. Let us consider Fig. 8.19. The dots represent model
instances with their mean squared errors for our two targets. We can see that some
instances score a lower error on the mood while others score better on activity level.
Some model instances clearly do not have a preferable parameter setting, because
other models score better on one of the two targets without performing worse on the
other. These are depicted in blue. Of course, these are not the model instances we
would choose. Instead, we only want to find model instances that are not, as we say,
dominated by other models.

Definition 8.2 A model instance λm is dominated by another model instance λn

when the mean squared error obtained by model instance λn is lower for at least one
target and not higher for any of the other targets.

8.4 Dynamical Systems Models 193

More formally:

dominated(λm, λn) =

⎧
⎪⎨

⎪⎩

1 ∃i ∈ 1, . . . , q : Ei(λm) > Ei(λn)∧
∀j ∈ 1, . . . , q : Ej(λm) ≥ Ej(λm)

0 otherwise

(8.31)

In the end, we are interested in finding a nice set of non-dominated model
instances. These non-dominated model instances make up the so-called Pareto Front
which connects the model instances, shown as a red line in Fig. 8.19. In case of
more targets we can go beyond a two-dimensional representation. Once the model
instances are found, a domain expert can select amodel deemed appropriate given the
importance of targets in the domain. For finding these model instances that are posi-
tioned on the Pareto Front we have a number of options at our disposal. One is the
well-known algorithm NSGA-II (for Non-Dominated Sorting Genetic Algorithm-
II) [40].

We have explained the concept of an evolutionary algorithm, namely the simple
GA, earlier. NSGA-II works more or less based on the same principles in terms of the
representation (bit string again), and the mutation and crossover operators. Of course
our goal is now different: we want to find a good spread of points that are positioned
on a Pareto Front, we no longer have a “best” solution aswe are considering the trade-
offs between the predictions on multiple targets. Let us first consider a population P
of model instances. We first need to identify sets of points that together form a Pareto
front of non-dominated solutions, expressed in Algorithm 22. This algorithm forms
multiple Pareto Fronts of non-dominated solutions, identified as Fi. We start with
the first model instance in the population and take that as a basis for a Pareto Front.
We add model instances to the front and remove them when they are dominated by
other model instances in the front. After we have passed all model instances in our
population, we have our first front (so we made a selection of our model instances),
although we do not know how optimal it is. We then continue with the remaining
model instances that were not included in the front yet and look for a next collection
of these remaining model instances that constitute a next front, etcetera.

We now have a set of f Pareto Fronts F1, . . . ,Ff . Another aspect is how well
solutions are spread across our Paterto Front. We would like to have a collection of
solutions that are nicely spread across the front otherwise we are not quite sure on
the shape of the front, and the expert will not be able to select a model that represents
specific trade-offs. To establish this, we first need to determine the distance between
points in our fronts. This is performed using calculation expressed inAlgorithm23. In
the algorithm, we see that model instances of a specific Pareto Front Fi are initialized
to have a zero distance. Then, for each objective they are sorted based on their error
for that objective. Points that score highest or lowest on the objective are set to an
infinite distance as they are the most extreme points on the front that we want to keep
for sure. This is because we want have the maximumwidth of our front and well will

194 8 Predictive Modeling with Notion of Time

see that bigger distance means a higher chance of being selected. Distance between
the other points is the difference between the error for the two adjacent points.

Algorithm 22: Finding Pareto Fronts
find_pareto_fronts(P):
used = []
i = 0
F = []
while |P| > 0 do

P′ = P[1] // The first model instance in the population
for p ∈ P ∧ p /∈ P′ do

P′ = P′ ∪ {p}
for q ∈ P′ ∧ p �= q do

if dominated(q, p) then
P′ = P′ \ {q}

else if dominated(p, q) then
P′ = P′ \ {p}

end
end
Add P′ to F
P = P \ P′
i = i + 1

end
return F

Algorithm 23: Finding distances between points on the Pareto Front
distance_assignment(Fi):
l = |Fi|
distance = []
for j in 1, . . . , l do

distance[j] = 0 // Initialize the distance to zero
end
for k in 1, . . . , q do

Fi = sort(Fi, k) // Sort the model instances based on their error for objective k
distance[Fi[1]] = distance[Fi[l]] = ∞ // Make sure boundary points are always selected
for s in 2, . . . , (l − 1) do

distance[Fi[s]] = EFi[s],k + (EFi[s+1],k − EFi[s−1],k)
end

end
return distance

We are finally ready to look at the overall algorithm (Algorithm 24). This shows
how we proceed from one generation to the next. The initialization can be done in
a random way. In the algorithm, a combined population of the parents and children
is created. From these we identify the Pareto fronts following the algorithm we have
previously seen. We then create a new population of parents by starting with the first
(and most dominant) Pareto Front we have identified, and add the complete set of

8.4 Dynamical Systems Models 195

Algorithm 24: NSGA-II main loop
Rt = Pt ∪ Ct // Take the parent and child population
F1, . . . ,Ff = find_pareto_fronts(Rt)

Pt = ∅
i = 1
while |Pt+1| < |Pt | do

if |Pt+1| − |Pt | ≥ |Fi| then
Pt+1 = Pt+1 ∪ Fi
i = i + 1

else
d = distance_assignment(Fi)

Fsorted = sort(Fi, d)

Pt+1 = Pt+1 ∪ {Fsorted [1]} ∪ · · · ∪ {Fsorted [|Pt+1| − |Pt |]}
end
Create Ct+1 using crossover and mutation
t = t + 1

model instances that span up the front. We continue until we can no longer add all the
model instances of the current Pareto Front due to the limit on the number of parents.
In that case, we add the instances that are most apart from the other instances (using
the distance function defined before) in the front. Once we have the set of instances,
we generate the offspring by applying crossover and mutation and move to the next
step. In the end, this gives us a nice Pareto Front which we can use to select the most
suitable model instance.

This ends our part on dynamical systems models. Note that more complex func-
tions to define how appropriate a model is have been defined as well, see e.g. [120].

8.5 Case Study

We return to the crowdsignals dataset. We focus on the temporal regression problem
to predict the heart rate that we identified earlier and will apply several approaches
we have introduced in this chapter. The selection of the data and features do not
change if we apply the temporal learning algorithms, therefore we will not touch
upon these aspects again.

8.5.1 Tuning Parameters

Previously, we tuned the parameters by means of a cross validation approach on
the training set and identified the parameter values that performed best in the cross
validation. The cross validation approach does, however, not take the order of the data
into account. Hence, we use a different scheme for our temporal learning algorithms
as they need to be trained on temporal sequences of data. We use a fixed (connected)

196 8 Predictive Modeling with Notion of Time

Fig. 8.20 Autocorrelation for different lags for hr_watch_rate

interval within the training set to train our models with certain parameter values and
test their performance on the remaining interval. We select the parameter values that
perform best and then train on the entire training set. We made the split as shown by
the dashed line in Fig. 7.17 as this split contains a nice coverage of activities in both
parts of the split. The tuning parameters of the algorithms are shown in Table8.1.
Furthermore, we normalize the data (to a [0.1, 0.9] range for the Recurrent Neural
Network and [−0.9, 0.9] for the Echo State Network) to boost performance. Finally,
we translate the predicted values back to the original range.

For the time series we first of all check whether the heart rate is stationary and
we explore the autocorrelations in the series. Using the Dickey-Fuller test we find
that the series is indeed stationary (with a p-value of 0.016). For the autocorrelations
with different lags we show a visualization in Fig. 8.20. We see that lower lags result
in a high autocorrelation. This means that we will try low values for the lag in
our parameter tuning phase. Furthermore, we use a variant of ARIMA which also
considers latent or exogenous variables (i.e. features from other sensors) and assigns
weights to them. Given the limits of the algorithms associated with time series (they
cannot cope with lots of features) we only apply the times series to our initial set of
measurements from Chap.2.

http://dx.doi.org/10.1007/978-3-319-66308-1_7
http://dx.doi.org/10.1007/978-3-319-66308-1_2

8.5 Case Study 197

Table 8.1 Algorithms and parameters for the regression problem

Algorithm Variant description Parameters varied

Echo State Net-
work (ESN)

Randomly connected reservoir of
neurons with tanh activation function
with the output being fed back into
the reservoir

Number of neurons in reservoir:
{400, 700, 1000}
α: {0.6, 0.8}

Recurrent Neural
Network (RNN)

Recurrent neural network with one
layer of hidden neurons with a
sigmoid activation function and
sigmoid output nodes

Number of hidden neurons: {50, 100}
maximum iterations over the entire
dataset: {250, 500}

Time series ARIMAX algorithm using Bayesian
inference

p: {0, 1, 3, 5}
q: {0, 1, 3, 5}
d: {0, 1}

8.5.2 Results

The results are shown in Table8.2. We see that the results are much worse than the
results we obtained in the previous chapter, except for the time series. The echo
state network seems to be able to perform reasonably well on the training set but
it generalizes very bad. The recurrent neural network does precisely the opposite,
which is not what we would expect to see. Possibly the parameter values have not
been selected properly due to the characteristics of the validation set and the model
obtained a bad fit on the full training set with these parameter settings. The time series
approach performs best, but this is mainly because it just predicts approximately the
average. Our hypothesis is that the data for the heart rate is too noisy and inconsistent
to really identify trends over time given the amount of data. This does not hold for all
measurements as we previously saw the activity is very well learnable. Furthermore,
as points are treated as a sequence and the next prediction depends on the previous
prediction as well, errors can easily propagate over time while this is not the case
for the previous approaches discussed in Chap.7. When we consider the subset of
predictors and their relative performance we see a scattered picture but we do see
that the temporal features have less of an impact on the performance compared to
the approaches that do not consider the temporal dimension (and this makes sense
of course).

Let us study the performance of the models a bit more closely. We take the
recurrent neural network with the initial features first as this shows the best general-
izability. Figure8.22 shows the predictions (with a setting of 50 hidden neurons, and
250 epochs). We observe similar problems as we have seen in our previous chapter
on top of the fact that predictions generally seem to underestimate the heart rate.
Furthermore, we see pretty extreme mistakes in both the training and test set predic-
tions, and several periods where the prediction is off for a prolonged number of time
points. When we explore the echo state network with all possible features (shown
in Fig. 8.23) with a reservoir size of 400 and α of 0.8 we observe that, except for a

http://dx.doi.org/10.1007/978-3-319-66308-1_7

198 8 Predictive Modeling with Notion of Time

Table 8.2 Performance of algorithm on label regression task (ESN = Echo State Network, RNN
= Recurrent Neural Network, TS = Time Series)

Approach
Features

ESN RNN TS

Training Test Training Test Training Test

Initial set 3107.0
(3529.1)

4654.3
(4544.7)

4004.8
(4558.3)

2507.1
(2899.4)

1567.0
(1210.6)

1347.8
(943.8)

Chap.3 3061.7
(3687.7)

4609.4
(4481.7)

3954.1
(4522.1)

2728.5
(3058.6)

- -

Chap.4 3127.6
(3661.9)

5425.9
(4926.3)

4109.8
(4568.9)

2877.4
(3382.9)

- -

Chap.5 2957.2
(3574.8)

5603.6
(4979.0)

4105.7
(4559.3)

3138.3
(3618.3)

- -

Selected
features

2782.3
(3253.0)

4394.4
(4368.4)

3774.1
(4471.3)

2925.6
(3391.0)

- -

Fig. 8.21 Performance of different algorithms

few extreme deviations, it is able to capture the training data pretty well. However,
we see an extremely noisy set of predictions for the test set. The output of the time
series model is shown in Fig. 8.24, with a setting p = 0 and q = 5. We see that it
more or less predicts the average, so it is not doing a good job, though it does better
in terms of performance than the neural network based models. Table8.3 shows the
importance of the key features used by the model.

We do not feel these results generally hold for the techniques we have explained
in this chapter, they should work in case of a more extensive history. It does show
that careful evaluation and a range of algorithms (both temporal and non temporal)
should be explored to select the most suitable type of model for a given dataset.

http://dx.doi.org/10.1007/978-3-319-66308-1_3
http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_5

8.5 Case Study 199

Fig. 8.22 Actual versus predicted values for RNN

Fig. 8.23 Actual versus predicted values for ESN

200 8 Predictive Modeling with Notion of Time

Fig. 8.24 Actual versus predicted values for TS

Table 8.3 Attribute
importance for ARIMAX
model

Feature β

MA(1) 1.8606

MA(2) 2.2943

MA(3) 2.0588

MA(4) 1.2991

MA(5) 0.4741

acc_phone_x −0.2286

acc_phone_y −0.3136

acc_phone_z 0.1977

acc_watch_x 0.1259

gyr_phone_y −0.1105

gyr_phone_z −0.1282

labelOnTable 0.2781

labelSitting −0.1099

mag_phone_y −0.1317

press_phone_pressure 0.1173

8.6 Exercises 201

8.6 Exercises

8.6.1 Pen and Paper

1. When discussing time series analysis we defined the acf function. Can we have
two different models that have the same acf ? If so, give an example.

2. Recurrent neural networks are known to have a problem to represent long term
memory. Approaches have been proposed that tackle this problem. Select one of
these algorithms and explain how it works.

3. Explain how the training time of a recurrent neural network relates to that of a
regular neural network without recurrence.

4. It seems strange that a random reservoir for echo state networks can do a similar
job as we see for other neural networks while saving training time. Try to find
a form of a proof that echo state networks are indeed able to learn patterns in a
similar fashion and write down the highlights of the proof.

5. A lot of effort has gone into trying to find better strategies to initialize the random
reservoir. However, due to the “no free lunch theorem” there is not a single
approach across all datasets. Explain the concept of the “no free lunch theorem”
in this context.

6. Give an example of a setting for the quantified self where you would expect a
recurrent neural network to work better than a feed forward network.

7. Although we have mainly treated pure machine learning based approaches, a
dynamical systems model can also be a good starting point for predictive mod-
eling. Give two advantages of using such a model and two disadvantages.

8. For the algorithms we have discussed to tune the parameters of the dynamical
systemsmodel, explain whether they are guaranteed to find the optimal parameter
setting.

9. How could we avoid overfitting towards the data for the parameter tuning of the
dynamical systems model?

8.6.2 Coding

1. In Eq.8.5 we demonstrate how second-order differencing can be applied to a
time series. Generate a non-stationary time series as the one in Fig. 8.2c and
apply second-order differencing. Describe the results.

2. Apply the neural network based approaches that have been treated here to one of
your own dataset similarly to how we have done it for the crowdsignals data.

202 8 Predictive Modeling with Notion of Time

3. Develop a simple dynamical systems model to predict the heart rate based on
certain features of the crowdsignals dataset (possibly withmore high level feature
such as “activity level” that you might need to derive from your data). Apply it
to the crowdsignals dataset by tuning its parameters and discuss the predictive
performance.

4. Implement two alternative strategies to initialize the reservoir in echo state net-
works and compare the performance to the performance achieved using the basic
implementation we have provided together with this book.

Chapter 9
Reinforcement Learning to Provide Feedback
and Support

In the approaches we have discussed so far we aimed at gaining insights from the
data: we filtered out noise fromdata, identified new attributes, and created predictions
for unseen data. This gives us a good understanding of the current state of our
quantified self enthusiasts and the expected future state. However, we do not yet
use our understanding to “close the loop”, namely to provide feedback and possible
support actions to the users given the understanding we have. The importance of this
is also stressed in [76, 80, 113]. Imagine Arnold: we predict that his progress is going
to stagnate if he continues his current schedule. We should actually do something
with this information right?We could provide a form of feedback or advice to Arnold
about how to avoid this stagnation. When we consider Bruce there is a possibility
that we predict a sharp decrease in his mood over the next couple of days. If we
know what actions work well to boost his mood we can advice Bruce to perform
one of those actions. In this chapter we will tackle this problem of learning when to
perform what actions from a reinforcement learning perspective. While applications
of reinforcement learning in this domain are not widespread, the fit with our purpose
is evident. We will just explain the basics in this chapter. There have been substantial
advancements in the area of reinforcement learning and we refer the reader to [127]
for a nice overview of the state-of-the-art combined with [79] for in-depth discussion
of deep reinforcement learning. We follow Sutton and Barto [112] by sketching the
basic setting and notation first (which is a bit different from our previous machine
learning notations), followed by a discussion of appropriate techniques.

9.1 Basic Setting

Figure9.1 shows illustrates our problem.We identify two actors in the setting, namely
the user (normally called the environment, but given our setting we feel this name is
more appropriate) and the agent. The user is one of the quantified selves, while the

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_9

203

204 9 Reinforcement Learning to Provide Feedback and Support

Fig. 9.1 Our quantified self approach as a Reinforcement Learning Problem (RL loop from [112])

agent is a software entity that decides when and how to support a user (e.g. the app
running on the mobile phone). The agent can observe the state of the user at a certain
time point t , denoted as St ∈ S. Connecting to the previous chapters we make the
definition of this state a bit more precise. We obtain a data instance xt from the user
at time t that represents the sensor values. We then apply the techniques we have
previously discussed to create a representation of the state of the user based on this
sensory data. This includes:

• Removal of noise (cf. Chap.3).
• Enrichment of our original set of features without noise by additional ones (follow-
ing Chap.4 and the presence in a certain cluster as explained in Chap. 5), resulting
in an enriched set x ′

t
• Prediction of unknown values using the traditional machine learning techniques
explained in Chap.7: ŷt

• Prediction of unknown (future) values using the machine learning techniques
explained in Chap.8, resulting in ŷt , . . . , ŷt+n if n time points in the future are
predicted. Note that making predictions for the future can be tricky as we now
intend to influence the future by intervening. In reinforcement learning there are
specific ways in which this is incorporated. We will return to this discussion later.

For some approaches we might require a history of measurements (e.g. temporal
features and predictions), indicated by the database and dashed arrows in the figure.
Together these values form our state St . Based on St the agent can make a decision
on a certain action At , taken from the set of available actions in the current state, i.e.

http://dx.doi.org/10.1007/978-3-319-66308-1_3
http://dx.doi.org/10.1007/978-3-319-66308-1_4
http://dx.doi.org/10.1007/978-3-319-66308-1_5
http://dx.doi.org/10.1007/978-3-319-66308-1_7
http://dx.doi.org/10.1007/978-3-319-66308-1_8

9.1 Basic Setting 205

At ∈ A(St). The applied action results in a new state of the user (St+1 obtained via
processing xt+1) and a so-called reward Rt+1. The reward is the goal in reinforcement
learning problems. It can be defined based on the state of the user and maps it to
a numerical value. For instance, the overall state of happiness of Bruce at a certain
time point. We are not only interested in the next reward we obtain, but in the total
rewards we expect to accumulate in the future, called a value function. An action
to support Bruce might for example not have an immediate effect while it does turn
out to be best in terms of future rewards. In reinforcement learning we try to find
what is called a policy, expressing which action to perform in what state. Policies are
deemed suitable when the application of the policy results in a lot of rewards over
time (i.e. we perform well in terms of the value function). Approaches should strike
a good balance between exploration (trying out new actions to see how successful
they are) and exploitation (applying known successful actions). If we perform too
little exploration we might never perform a potentially very successful action while
if we never exploit we could end up trying actions that are mostly not appropriate.

Let us formulate the problem we are facing a bit more precise and formal (yes,
expect a good number of formulae to follow shortly). We define the goal Gt at time
point t by means of the future reward we obtain:

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + · · · =
T−(t+1)∑

k=0

γ k Rt+k+1 (9.1)

Here, γ is a discount factor for the future reward in the range [0, 1]. It indicates the
relevance of these for the evaluation. In case of a value γ = 0 we only care about the
immediate reward while for a value of γ = 1 future rewards are equally important
as the current reward. T expresses the end time we consider in our system (which
can also be ∞). One important aspect in several approaches we will discuss is that
the system we described in Fig. 9.1 has theMarkov Property. To define this property
in a formal way, let us consider our states and rewards. We can express a certain
probability that we end up in a state St+1 = s with a reward Rt+1 = r based on our
entire history:

Pr{Rt+1 = r, St+1 = s|S0, A0, R0, . . . , St , At , Rt } (9.2)

We can also only consider the history of the previous time point without considering
the reward at the time point:

Pr{Rt+1 = r, St+1 = s|St , At } (9.3)

We say that the state property has the Markov Property when both probabilities
are equal for all rewards r and states s over all time points. In other words, when
the previous state and action contain enough information to assess the probabilities
of moving to a next state properly. If we think of a game of chess, this property
is satisfied: if we know the position of the different pieces on the board and the

206 9 Reinforcement Learning to Provide Feedback and Support

movement performed as that is all information that is relevant for the game, the entire
history is not. Is the property likely to hold for the quantified self? Good question,
which highly depends on the amount of sensory data obtained and the problem we
aim to tackle. It is very likely that it will not be satisfied for quite some cases. A lot of
approaches do make this assumption though, and they often consider the problem as
a finite Markov decision process (finite MDP) with the hefty assumption of a finite
number of states and actions. Given our input space (where we typically have lots of
numerical values) we cannot expect this for our case, but there are ways around this,
namely to map our space to finite domains. We will turn to this later.

Assuming our problem to be a finite MDP though, we define the probability of
moving to a next state s ′ from a state s with action a, referred to as the transition
probability:

p(s ′|s, a) = Pr{St+1 = s ′|St = s, At = a} (9.4)

We express the expected reward:

r(s, a, s ′) = E[Rt+1|St+1 = s ′, St = s, At = a] (9.5)

This formulates our problem in a very nice way. To give a concrete example,
of p(s ′|s, a) imagine Bruce in a depressed state, we provide Bruce with a message
“cheer up” and predict the probability that Bruce will no longer be depressed at the
next time step. Furthermore, we calculate the expected reward r(s, a, s ′) for that
outcome, which will be high as we move to a non-depressed state.

The final aspect we need to fully formulate our problem is the policy π , i.e. when
to performwhat action. Each policy assigns a probability to a certain available action
a in a given state s: π(a|s). Given the assumptions we have previously made, the
expected value of a state s (state-value function) if we would follow our policy π

thereafter is:

vπ (s) = Eπ [Gt |St = s] (9.6)

And similarly, we define the value of an action a in state s given our policy π as
(called the action-value function):

qπ (s, a) = Eπ [Gt |St = s, At = a] (9.7)

We are interested in finding the policy (or policies) π∗ that provides the highest
state-value function in all states:

∀s : vπ∗(s) ≥ vπ (s) (9.8)

9.1 Basic Setting 207

Fig. 9.2 Example reinforcement learning Problem for Bruce

The value is denoted as v∗(s). Similarly, we define the optimal action-value function:
q∗(s, a) given our optimal policies π∗. Well, the stage is set. We have treated all the
fundamentals.

Let us consider a simple example to understand matters a bit better. Figure9.2
shows such an example. We assume that the state resulting from an action is com-
pletely deterministic in this case. The figure shows an overview of the relevant states
of Bruce (i.e. S) related to his depression problem. They are presented by the large
circles. We have an initial state (signs of depression), two intermediate states (overly
happy and reflecting) and two terminal states: depressed and happy. Obviously we
do not mean Bruce will cease to exist when he falls into a depression, but given
his history he will likely be advised to seek human counseling which is beyond the
scope of our system. In a happy state there is no need to support Bruce any longer
until our friend shows signs of depression yet again. In each state, we have the same
two actions at our disposal (A(S) is the same for all S ∈ S). The first action asks
Bruce to remember to plan fun activities, something he should recollect from prior
therapies. The second option is to give Bruce a boost by providing him the message
cheep up!. The figure expresses the transitions between states based on these actions
by means of arrows with a small circle representing the action, e.g. when we perform
the action cheer up! in the signs of depression state, Bruce moves to the overly happy
state. Each state also shows the reward it gives. What would be the optimal policy for
our initial state in this case? Well, assuming that we only consider the reward of the

208 9 Reinforcement Learning to Provide Feedback and Support

next state it would be selecting cheer up! resulting in the highest immediate reward
of 20. In the long run however (if we only look ahead one additional time point) the
obvious choice is to select remember: plan fun activity as we can get Bruce in the
happy state after one more action then and we obtain a high reward for that. How do
we find such a policy π? We will look into that now.

9.2 One-Step SARSA Temporal Difference Learning

In the first approach we are going to discuss we assume that we can make a table of
the situations versus the possible actions. This algorithm is based on [102]. We do
not assume complete knowledge on the user, making a so-called temporal difference
based approach most suitable. This allows for online learning (i.e. learning from
experiences as we go along) while still using information we obtained in the past.
Our goal is to learn a policy that gives us appropriate actions given a certain state,
also called a control problem. An alternative is to learn the valuing of a state (which
we will not consider in the remainder of this chapter). Let Q(St , At) denote the value
of the state-action pair for a policy π . This represents how appropriate action At is
in situation St given our policy π , i.e. how suitable a transition is between states.
For instance, how appropriate the action to say “cheer up” for a depressed Bruce is.
Remember that we have previously defined qπ (s, a). We can alter this definition a
bit, by saying that instead of looking at the goal G(t) (i.e. the future rewards), we
look at the reward we obtain in the next state and the state-action value of our policy
given the next state. We derive a new definition as follows:

qπ (s, a) = Eπ [Gt |St = s, At = a] (9.9)

qπ (s, a) = Eπ [
T−(t+1)∑

k=0

γ k Rt+k+1|St = s, At = a] (9.10)

qπ (s, a) = Eπ [Rt+1 + γ

T−(t+2)∑

k=0

γ k Rt+k+2|St = s, At = a] (9.11)

qπ (s, a) = Eπ [Rt+1 + λqπ (St+1, At+1)|St = s, At = a] (9.12)

We want to create an estimate of the value of an action At in a situation St given our
policy π . We define this estimate as Q(St , At). Based on our previous derivation we
update Q(St , At) as:

Q(St , At) ← Q(St , At) + α(Rt+1 + γ Q(St+1, At+1) − Q(St , At)) (9.13)

This expresses that the new value for an state-action pair is the old value plus how
much the reward combined with the next state action value differs from the current
Q-value. We add α times this difference.

9.2 One-Step SARSA Temporal Difference Learning 209

Once we have these values for a policy π we still need to decide on what action
A ∈ A(St) to select. Various action selection approaches are available, including
one called ε-greedy. In the ε-greedy approach we select a random action with prob-
ability ε to allow for exploration, while in all other cases we select the action with
the highest value. This is formalized in Algorithm 25.

Algorithm 25: ε-greedy action selection given a state S
r = random number from [0, 1]
if r < ε then

return a random action A from A(S)

else
return argmaxA∈A(S) Q(S, A)

An alternative action selection mechanism is the softmax approach. The probability
of selecting an actions A in situation S is defined as:

p(A|S) = e
Q(A,S)

τ

∑
A′∈A(S) e

Q(A′ ,S)

τ

(9.14)

Here, τ expresses a temperature, similar to simulated annealing that we have treated
before. τ has a value > 0. The lower the temperature, the more we select based on
the value for Q(A, S). The higher, the more we select in a random way. We can start
with a high temperature (doing more exploration) and lower the temperature as we
gather more experiences (exploitation).

Algorithm 26: Evolving a policy π with SARSA
∀S ∈ S, A ∈ A : Q(S, A) = random
S = derive_state(x1)
time = 1
Select an action A based fromA(S) based on our set of Q(S, A)’s using a selection approach
while True do

Perform action A
time = time + 1
S′ = derive_state(xtime)

R = observe reward
Select an action A′ from A′(S′) based on our set of Q(S′, A′)’s using a selection
approach
Perform action A′
Q(S, A) = Q(S, A) + α(R + γ Q(S′, A′) − Q(S, A))

A = A’
S = S’

end

210 9 Reinforcement Learning to Provide Feedback and Support

Table 9.1 Q(S, A) values for the Bruce case

Cheer up! (cu) Remember: plan fun activity
(pfa)

Signs of depression (sod) 20 65

Overly happy (oh) 0 0

Reflecting (ref) 50 0

Given the selection method, we will explain the State-Action-Reward-State-
Action algorithm SARSA to adjust the policy (note that we leave out some details
with respect to the Markov model for the sake of simplicity). The algorithm is shown
in Algorithm 26. We randomly assign a value for Q(S, A) in the initial phase. We
start by deriving the state S from our initial set of sensory values x1 and select an
action based on some action selection mechanism and our values for all possible
actions Q(S, A). We perform the action and collect sensory data again to form state
S′. We also observe the reward R. In this new situation, we select a next action A′.
We can now update our value of Q(S, A). We set the action A to our new action A′,
the state S to S′ and continue in our loop by executing the action, observing the new
state S′, etcetera.

Let us return to our previous example of Bruce. We eventually end up with the
Q-values shown in Table9.1. Note that we only show states where we can perform
actions, thereby omitting the terminal states. Let us consider one example Q-value,
namely Q(sod, p f a) (considering the abbreviations noted in the table). Given our
equation for the Q-values (assuming ε − greedy) we compute that:

Q(sod, p f a) = Q(sod, p f a) + α(15 + γ Q(re f, cu) − Q(sod, p f a)) (9.15)

which results in a value of 65 in the end if a value of γ = 1 is selected.
We now have a simple approach to decide on feedback and support for our quan-

tified selves. However, more sophistical approaches exist that help to improve this
simple algorithm. We will discuss these next.

9.3 Q-Learning

Q-learning is certainly oneof themostwell-known reinforcement learning approaches
and was introduced in [125]. In Q-learning we follow roughly the same approaches
as we have seen in SARSA. However, while in SARSA we updated our values for
Q(S, A) based on the value of the selected action in the next state S′ using the same
policy (e.g. ε-greedy), for Q-learning we directly select the action that has the high-
est value for the next state. This simplifies our algorithm, as we can see below. The
approach is sometimes called off-policy to reflect that we apply a different policy for

9.3 Q-Learning 211

the calculation of the new value of Q(S, A) compared to the one we use to select the
actual action A. SARSA is an on-policy approach as we use the same for both cases.

Algorithm 27: Evolving a policy with Q-learning
∀S ∈ S, A ∈ A : Q(S, A) = random
S = derive_state(x1)
time = 1
while True do

Select an action A from A(S) based on our Q(S, A)′s using a selection approach
Perform action A
time = time + 1
S′ = derive_state(xtime)

Q(S, A) = Q(S, A) + α(R + γ maxA′(S′) Q(S′, A′) − Q(S, A))

S = S’
end

9.4 SARSA(λ) and Q(λ)

We are going to extend the approaches we have just considered. In our simple SARSA
andQ-learning approaches we lacked a concept that was able to identifywhat actions
we had taken in the past that contributed to the current state. This would allow us to
put blame or credit to those choices we made before which we currently can only
do for one step . These are so-called eligibility traces. Assume Zt (s, a) represents
the eligibility trace at time point t for state s with action a. The value for the trace is
defined as:

Zt (s, a) =
{

γ λZt−1 + 1 if s = St ∧ a = At

γ λZt−1 otherwise
(9.16)

The combined factors γ (as seen before) and λ determine how quickly the history
of the eligibility trace decays. We add 1 to the eligibility trace of a state if the state
occurred and 0 otherwise. How do we incorporate this?Well, we update our equation
for calculating Q(S, A). For SARSA this becomes:

Q(St , At) ← Q(St , At) + α · (Rt+1 + γ Q(St+1, At+1) − Q(St , At)) · Zt (St , At)

(9.17)

Here, we see that changes in the Q-value depend on the value of the eligibility trace.
If the state-action pair is more eligible (i.e. in our history the pair has been applied
more frequently), the magnitude of the update is increased. We can simply plug this
into our learning algorithm we have defined before. For Q-learning the new equation
becomes:

212 9 Reinforcement Learning to Provide Feedback and Support

Q(St , At) = Q(St , At) + α · (Rt+1 + γ max
A′(St+1)

Q(St+1, At+1) − Q(St , At)) · Zt (St , At)

(9.18)

9.5 Approximate Solutions

So far we have assumed a value Q(S, A) for each combination, but this is not very
realistic in our quantified self setting. We are likely to have a lot of different states
and hopefully also have quite some opportunities to provide a form of support or
feedback (in other words: actions). We cannot just store these. We could however
learn a model that predicts the value Q(S, A) in a state S for a given action A.
Luckily, we have already seen a lot of these models before in our previous chapters.
We can see each observation of a state S and an action A with a value Q(S, A) as an
instance of a learning problem with Q(S, A) as our target. Assume we have a matrix
of weights w that represents a model for our predictions. For instance, the weights
of a neural networks. Assuming our model is represented as f̂ (St , At ,w) giving a
prediction for Q(St , At) we can define the error as:

∑

S∈S,A∈A

√
(Q(St , At) − f̂ (S, A,w))2 (9.19)

In case we do not have instances for all cases we obviously only consider the
cases we have information about. We can apply this model to estimate the value for
Q(S, A) in our algorithms, and update the model after each state change.

9.6 Discretizing the State Space

One final aspect we will devote some attention to a way to discretize the state space.
We could have an infinite state space in our quantified self setting, and we would like
to create useful representations of states. If we just consider all possible values for
the activity level of Arnold, we would already be lost with our previous approaches.
For this purpose, the U-tree algorithm (cf. [119]) can be used. Note that we slightly
simplify and generalize the approach to match with our previous algorithms. This
approach dynamically discretizes the state space by means of a state tree, very much
like the decision trees we have seen. The leaves of the tree represent a discrete state
while the nodes tell us how to get there based on the continuous values observed in
our current state.

We build the tree by starting with a single node (i.e. a leaf): all continuous states
are mapped to one discrete state. We start a data collection phase (i.e. running a
reinforcement learning algorithm) and store data about the states S we have visited,

9.6 Discretizing the State Space 213

the action A selected, the next state S′ and the reward R. After having collected
data for a while, we stop and consider the newly obtained values for Q(S, A) for
each of the leaves that we have (as said, initially we have one). For each leaf, we
investigate whether a split could be beneficial. Hereto, we iterate over all attributes
Xi and sort the data according to the values of that attribute. We consider a split at
each point in the ordered list of values and test for a significant difference between
the Q-values in the two resulting sets using a Kolmogorov Smirnov test. We store
both the p-value and the split criterion of the split with the lowest p-value (i.e. the
most different subsets). In the end, we select the attribute with the lowest p-value. If
the value is below 0.05 we split based on that attribute and the split value we have
identified. That is all there is to it.

9.7 Exercises

9.7.1 Pen and Paper

1. It is known that reinforcement learning can be a slow learning algorithm. Imagine
we have u possible discrete input states and v possible actions. In the worst case,
how many inappropriate advices would be given to a user before the right one is
provided, assuming there is only one right action for each input state?

2. Assume that we use data similar to our crowdsignals data. The objective is to
make the user more active. What could be an appropriate definition of a reward
function for a reinforcement learning algorithm we could deploy based on the
data we have?

3. Let us continue on the case we briefly explained in the previous question: define
a set of at least 5 actions that could be appropriate in terms of an intervention for
this case.

4. A lot of the reinforcement learning algorithms revolve around the Markov prop-
erty. Give an example of a setting in the quantified self where theMarkov property
is clearly not satisfied. Explain why the property is not satisfied.

5. We have seen both on-policy and off-policy approaches in this chapter. List an
advantage of the on-policy approach towards reinforcement learning and list one
disadvantage (as opposed to an off-policy approach).

6. Is the state space discretization approach that has been discussed in this chapter
always suitable, or can you think of scenarios where it might be completely off?
Argue why (not).

214 9 Reinforcement Learning to Provide Feedback and Support

9.7.2 Coding

1. Implement one of the reinforcement learning algorithms we have seen in this
chapter. The implementation should be able to handle continuous inputs, but
only discrete outputs.

2. Select one of the datasets that are available (or one you can measure yourself).
Define a setting of a user with a certain goal related to this dataset, and think of
possible interventions you could perform (in this case: messages you can send) to
support the user in achieving the goal. Implement a reward function that expresses
in how far the user achieved the goal based on the data that has been collected.

3. Implement this system you developed under (2) on themobile phone and evaluate
how well this works, write a report on the experiences both from a machine
learning perspective and the perspective of the user (did the user see improvement
over time, were the suggestions useful, etcetera).

Part III
Discussion

Chapter 10
Discussion

Sadly enoughwe have reached the final chapter of this book. In this chapter, we aim to
provide an outlook towards the future and discuss the challenges that we see for this
domain.We have covered a lot of different topics within this book, where some of the
topics we covered are not yet common practice in the domain of machine learning for
the quantified self. Examples are the reinforcement learning techniques, the temporal
predictive modeling techniques, and the outlier detection algorithms. Hence, even
some parts we have described already still require a thorough evaluation. In addition,
we will identify a number of issues that are not covered with the techniques we have
explained in this book and that require additional research in terms of algorithmic
developments. This is not meant to be an exhaustive list, but rather to give an idea
on some developments we foresee will be required to advance the domain.

10.1 Learning Full Circle

Predictive modeling is a common research topic related to the quantified self, for
instance the recognition of activities basedon the sensory values.What is not common
at all is learning how to use these insights to support the user in a personalized way,
and the development of techniques to do so. As said, we suggest that the domain
of reinforcement learning is a promising approach for this, but there are a number
of issues that need to be addressed before these techniques can be used in practical
setting:

1. learning quickly: the users will lose interest if interventions or feedback provided
are not in line with the expectations and characteristics of the user. Arnold will
not be happy in case he is provided with suggestions that would be suitable for
his grandmother. The consequence is that the learning algorithm does not have
endless opportunity to figure out what works for a user, and hence, it needs to

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1_10

217

218 10 Discussion

learn rapidly. Reinforcement learning is known to be slow. Therefore, we should
create algorithms that learn faster, e.g. by exploiting multiple similar users at the
same time. This opens up a whole range of interesting research questions: when
are users similar? Should we consider their basic socio-demographic data? Or
should we look at their responses to feedback and interventions? And how do
we share the burden between users? Should we try out different interventions
across the different users? One shot learning (see e.g. [45]) could be a promising
approach as well.

2. learning safely: while learning fast is desirable, we might have to do with users
that are vulnerable, such as Bruce. We do not want to provide Bruce with con-
tinuous suggestions that might cause him to become depressed again. Of course,
we do want to figure out what works well for Bruce and what does not. These are
two opposing forces: we do not want to constrain the search space for what inter-
vention or feedback to provide, while we do want to constrain it to avoid doing
harmful things. Exactly how to constrain algorithms to learn in this way is some-
thing that needs to be explored. There is somework on constrained reinforcement
learning already [65] but more work is still required.

3. using future predictions: a lot of emphasis in this book has gone into predictive
modeling. While this is certainly of value for non-intervention settings, things
become blurry when we predict the future and intervene at the same time. How
can we predict what would have happened if we did not intervene? And does
the predictive modeling help us to intervene pro-actively and avoid undesired
situations (e.g. Bruce having a nervous breakdown, Arnold loosing his shape)?
These are issues that require rigorous evaluation, also with users.

10.2 Heterogeneity

Heterogeneity is a key phrase within the quantified self.We face heterogeneous users
as well as heterogeneous devices, and even heterogeneity in the amount of devices a
user might cary.

1. learn across devices: we should be able to perform machine learning over mul-
tiple devices with different specifications and capabilities. This would require
mapping datasets to a more abstract level that is device independent, e.g. scale
accelerometer values, use proxies for sensors that are not available on a certain
device, etcetera. Precisely how to do this is an open research question.An example
of a study that explored different phone platforms can be found in [21].

2. learn across people: we are potentially facing a lot of different users with their
own characteristics. People have different walking speeds, carry their devices at
different positions, have different preferences for support, etcetera. As argued
before, learning fully individually is not always possible due to a lack of data. A
challenge is therefore to learn generic models across people that are still reason-
ably accurate and can act as a starting point when there is insufficient data.

10.2 Heterogeneity 219

3. coordinate behavior: if a user carries multiple devices, then there should be a
form of coordination between the devices. For instance, if we provide feedback,
which device should we use at what time? Should we provide feedback on a
smart watch when a user is in a conversation or a meeting? Of course, we do not
want to show the same message on two devices at the same time. This context-
dependent usage of different platforms and learning to coordinate between them
is a direction that will require more and more attention.

10.3 Effective Data Collection and Reuse

Annotated data for the quantified self can be difficult to obtain.We should not require
the user to insert lots of information without seeing an immediate benefit. To tackle
this problem, not only can we learn across users or devices, but we can also improve
the way in which data is collected.

1. collection of data: when learning is performed, some cases are much more inter-
esting to label than others. If you observe data which clearly marks a particular
activity that has been seen before there is no need to bother the user. On the other
hand, if data that is completely different from what has been seen so far we might
be very interested in knowing the label. The field of active learning (see [104] for
a nice overview) could have great potential for this purpose.

2. transfer between use cases: for the quantified self setting we would expect to not
just focus on learning one specific task (e.g. activity recognition) but to tackle
multiple tasks. A question that arises is how we can reuse lessons learned across
these tasks. Transfer learning (see e.g. [92]) would be a field that is useful in this
respect.

10.4 Data Processing and Storage

We did not touch upon the data storage and efficient processing in this book at
all, except when we discussed more efficient streaming data mining algorithms that
avoid having to store and process entire datasets. Of course, it does pose interesting
trade-offs and challenges that still require further investigation:

1. storing data: storing data in case we do not use a streaming approach needs to be
done somewhere. Questions that arise are: how do we efficiently store the data?
Where do we do this? Should this be locally on the phone, or somewhere in a
cloud based infrastructure? There are systems that focus on this issue and try to
manage this problem, see e.g. [69]. Of course, the choice for storage is highly
intertwined with the algorithms being used: does it need to learn for individual
users or across people?

220 10 Discussion

2. processing data: once we have data available, there are trade-offs about where
the processing should take place: where do we learn? Should this be done locally
on the phone or in the cloud? And how often should we update our models? If we
do not do this frequently enough we might not have an accurate representation
of the user.

3. battery management: measuring everything we can as often as possible not only
poses challenges for storage, but also for the battery of the phone: we potentially
drain it quickly if we measure too often. In addition, the more data, the higher the
complexity of the learning process, but also the more accurate it could potentially
become. We should therefore develop algorithms that take the battery usage into
account.

10.5 Better Predictive Modeling and Clustering

While we have explained a variety of approaches in the machine learning domain
that can contribute to predicting unknown values about a user, there is still room
for improvement in the context of the quantified self. Below, we list a number of
directions we feel would be promising.

1. better features with less effort: the identification of features can already be auto-
mated to a large extent but is still consideredmore an art than following a scientific
recipe. Sensors have different sampling rates and somehow we need to exploit all
data in the best possible way. Deep learning is known for its ability to automat-
ically extract useful features, we feel this is a promising avenue that should be
explored further. In addition, extraction of temporal features for the non-temporal
learning algorithms is a direction that also deserves more attention.

2. domain knowledge: while this book is all about machine learning, we should also
consider the fact that domain knowledge can be extremely useful. We should
not reinvent the wheel. Combining machine learning approaches with domain
knowledge is in our opinion very important in the context of the quantified self,
it can also help us to handle the cold start problem. We have already shown this
a bit when we discussed the dynamical systems models in Chap.8.

3. temporal learning: we have explained a number of temporal learning algorithms
in this book, but many more exist. We feel that the temporal developments should
result in better predictions than the ones we displayed in our case study. Recently,
there have been developments in the area of temporal learning that have not
been described in this book, e.g. LSTM [60], GRU [37], etc. We foresee more
developments in this area, also for learning well across different users.

http://dx.doi.org/10.1007/978-3-319-66308-1_8

10.5 Better Predictive Modeling and Clustering 221

4. explainability of models: black box methods can often work pretty well in terms
of predictive performance. However, a level of explainability of the model can
also be desirable, for example if understanding the basis for an advice is of
vital importance (e.g. when a therapist is involved to battle Bruce’s notorious
depressions). Trying to develop methods that explain exactly what features black
box models use could be beneficial. See e.g. [132]

10.6 Validation

Although we have focused a lot on evaluation of our predictive modeling techniques,
we did not focus on the validation of full-fletched systems that incorporate the tech-
niques we have explained in this book. There are a number of issues that require
attention to perform such a validation study that have in our opinion not been thor-
oughly addressed yet:

1. do validation: a lot of applications are seen (e.g. in the app stores) that make all
sorts of claims without showing any form of proof that the app actually works
(see e.g. [84]). We feel that especially health related apps should be much more
rigorously evaluated before exposing users to them.

2. definition of success: the outcome measure is obviously highly dependent on
the specific domain in which the app has been developed. If we for example
develop an app for a specific disease (e.g. depression) or health goal, well-known
measures are present that define success of a treatment, in our case being the app.
However, these goals might not always be as clear. Possibly user engagement is
more important, especially for companies selling apps. How to precisely define
such metrics is still a challenge.

3. setup of validation study: for medical or health treatments very clear setups for
validation studies exist, such as randomized controlled trials. These are rigor-
ous studies with well defined protocols that take a long time to prepare and get
approved. Based on our experience, these more traditional studies slow down
the validation process to such an extent that the application under evaluation is
already outdated when the actual trial starts. There is really a need for new par-
adigms that are faster, but still take the considerations of the users and privacy
issues throughly into account. A/B testing is used frequently for evaluating web-
sites and user behavior when browsing. Possibly a nice middle ground can be
found.

References

1. Aggarwal, C.C. (ed.): Data streams: models and algorithms. Springer Science & Business
Media, New York (2007)

2. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.T.: Learning from Data, vol. 4. AMLBook,
Singapore (2012)

3. Aerts, M., Claeskens, G., Hens, N., Molenberghs, G.: Local multiple imputation. Biometrika,
375–388 (2002)

4. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high
dimensional data. Data Min. Knowl. Discov. 11(1), 5–33 (2005). doi:10.1007/s10618-005-
1396-1

5. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings
of 20th International Conference Very Large Data Bases, VLDB, vol. 1215, pp. 487–499
(1994)

6. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–
843 (1983)

7. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for
human activity recognition using smartphones. In: European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (April), pp. 24–26 (2013).
http://www.i6doc.com/en/livre/?GCOI=28001100131010

8. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on
smartphones using a multiclass hardware-friendly support vector machine. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). LNCS, vol. 7657, pp. 216–223 (2012)

9. Augemberg, K.: Building that perfect quantified self app: notes to developers, part 1. The
Measured Me Blog (2012)

10. Banos, O., ttila Toth, M.A., Damas, M., Pomares, H., Rojas, I.: Dealing with the effects of
sensor displacement in wearable activity recognition. Sensors (Basel, Switzerland) 14(6),
9995–10,023 (2014). doi:10.3390/s140609995

11. Bao, L., Intille, S.S.: Activity Recognition from user-annotated acceleration data. Per-
vasive Comput., 1–17 (2004). doi:10.1007/b96922, http://www.springerlink.com/content/
9aqflyk4f47khyjd

12. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A temporal pattern mining approach
for classifying electronic health record data. ACM Trans. Intell. Syst. Technol. (TIST) 4(4),
63 (2013)

13. Berchtold, M., Budde, M., Schmidtke, H.R., Beigl, M.: An extensible modular recognition
concept that makes activity recognition practical. In: Annual Conference on Artificial Intel-
ligence, pp. 400–409. Springer, Berlin (2010)

14. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. KDD
Workshop, Seattle, WA 10, 359–370 (1994)

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1

223

http://dx.doi.org/10.1007/s10618-005-1396-1
http://dx.doi.org/10.1007/s10618-005-1396-1
http://www.i6doc.com/en/livre/?GCOI=28001100131010
http://dx.doi.org/10.3390/s140609995
http://dx.doi.org/10.1007/b96922
http://www.springerlink.com/content/9aqflyk4f47khyjd
http://www.springerlink.com/content/9aqflyk4f47khyjd

224 References

15. Bhattacharya, S., Lane, N.D.: From smart to deep : robust activity recognition on smart-
watches using deep learning. In: The Second IEEE International Workshop on Sensing Sys-
tems and Applications Using Wrist Worn Smart Devices (2016). doi:10.1109/PERCOMW.
2016.7457169

16. Bhattacharya, S., Nurmi, P., Hammerla, N., Plötz, T.: Using unlabeled data in a sparse-coding
framework for human activity recognition. Pervasive Mob. Comput. 15, 242–262 (2014).
doi:10.1016/j.pmcj.2014.05.006

17. Biau, G., Devroye, L.: Lectures on the Nearest Neighbor Method. Springer, Berlin (2015)
18. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
19. Blanke, U., Schiele, B.: Sensing location in the pocket. In: Ubicomp Poster Session, pp. 4–5

(2008). http://www.ulfblanke.de/research/ubicomp08/ubicomp08_paper_web.pdf
20. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–

1022 (2003)
21. Blunck, H., Jensen, M.M., Sonne, T., Science, C.: ACTIVITY RECOGNITION ON SMART

DEVICES: Dealing with diversity in the wild. GetMobile 20(1), 34–38 (2016)
22. Bogue, R.: Recent developments in mems sensors: a review of applications, markets and

technologies. Sens. Rev. 33(4), 300–304 (2013)
23. Bosse, T., Hoogendoorn, M., Klein, M.C., Treur, J.: An ambient agent model for monitoring

and analysing dynamics of complex human behaviour. J. Ambient Intell. Smart Environ. 3(4),
283–303 (2011)

24. Bosse, T., Hoogendoorn, M., Klein, M.C., Treur, J., Van Der Wal, C.N., Van Wissen, A.:
Modelling collective decision making in groups and crowds: integrating social contagion and
interacting emotions, beliefs and intentions. Auton. Agents Multi-Agent Syst. 27(1), 52–84
(2013)

25. Both, F., Hoogendoorn, M., Klein, M.C., Treur, J.: Modeling the dynamics of mood and
depression. In: ECAI, pp. 266–270 (2008)

26. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and
Control, 5th edn. Wiley, Hoboken (2015)

27. Bracewell, R.: The fourier transform and its applications (1965)
28. Breda, W.v., Hoogendoorn, M., Eiben, A., Andersson, G., Riper, H., Ruwaard, J., Vernmark,

K.: A feature representation learning method for temporal datasets. In: IEEE SSCI 2016.
IEEE (2016)

29. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
30. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local out-

liers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)
31. Brockwell, P., Davis, R.: Introduction to Time Series and Forecastin. Springer, Berlin (2010)
32. Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using

a wearable device. In: Pattern Recognition and Image Analysis, pp. 289–296 (2011). doi:10.
1007/978-3-642-21257-4, doi:10.1007/978-3-642-21257-4_36

33. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. TheMIT Press, Cambridge
(2010)

34. Chatfield, C.: The Analysis of Time Series-An Introduction. Chapman&Hall, London (2004)
35. Chauvenet, W.: A Manual of Spherical and Practical Astronomy, vol. 1, 5th ed., revised and

corr. Dover Publication, New York (1960)
36. Chen, Z., Lin, M., Chen, F., al, E.: Unobtrusive sleep monitoring using smartphones. In:

Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, pp.
4:1–4:14 (2013). doi:10.1145/2517351.2517359

37. Cho, K., VanMerriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine
translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

38. Choe, E.K., Lee, N.B., Lee, B., Pratt, W., Kientz, J.A.: Understanding quantified-selfers’
practices in collecting and exploring personal data. In: Proceedings of the 32nd Annual ACM
Conference on Human Factors in Computing Systems, pp. 1143–1152 (2014). doi:10.1145/
2556288.2557372, http://dl.acm.org/citation.cfm?id=2557372

39. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

http://dx.doi.org/10.1109/PERCOMW.2016.7457169
http://dx.doi.org/10.1109/PERCOMW.2016.7457169
http://dx.doi.org/10.1016/j.pmcj.2014.05.006
http://www.ulfblanke.de/research/ubicomp08/ubicomp08_paper_web.pdf
http://dx.doi.org/10.1007/978-3-642-21257-4
http://dx.doi.org/10.1007/978-3-642-21257-4
http://dx.doi.org/10.1007/978-3-642-21257-4_36
http://dx.doi.org/10.1145/2517351.2517359
http://arxiv.org/abs/1409.1259
http://dx.doi.org/10.1145/2556288.2557372
http://dx.doi.org/10.1145/2556288.2557372
http://dl.acm.org/citation.cfm?id=2557372

References 225

40. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: Nsga-ii. In: International Conference on Parallel
Problem Solving From Nature, pp. 849–858. Springer, Berlin (2000)

41. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80.
ACM (2000)

42. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Cambridge (2012)
43. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods, vol. 38. OUP,

Oxford (2012)
44. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edition, Springer

(2015). doi:10.1007/978-3-662-44874-8
45. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern

Anal. Mach. Intell. 28(4), 594–611 (2006)
46. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in Analyzing

Unstructured Data. Cambridge University Press, Cambridge (2007)
47. Fox, S., Duggan, M.: Tracking for health (2013). http://www.pewinternet.org/2013/01/28/

main-report-8/
48. Fraden, J.: Handbook of Modern Sensors, vol. 3. Springer, Berlin (2010)
49. Freund, Y., Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an

application to boosting. In: European Conference on Computational Learning Theory, pp.
23–37. Springer, Berlin (1995)

50. GfK: A third of people track their health or fitness (2016). http://www.gfk.com/insights/
press-release/a-third-of-people-track-their-health-or-fitness-who-are-they-and-why-are-
they-doing-it/

51. Gimpel,H.,Nißen,M.,Görlitz, R.A.:Quantifying the quantified self: a study on themotivation
of patients to track their own health. ICIS 2013, 128–133 (2013)

52. Grubbs, F.E.: Sample criteria for testing outlying observations. Ann.Math. Stat., 27–58 (1950)
53. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1),

1–21 (1969)
54. Gu, F., Kealy, A., Khoshelham, K., Shang, J.: User-independent motion state recognition

using smartphone sensors. Sensors 15(12), 30636–30652 (2015)
55. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams. In: proceedings

of the 41st Annual Symposium on Foundations of Computer Science, 2000, pp. 359–366.
IEEE (2000)

56. Hao, T., Xing, G., Zhou, G.: isleep: Unobtrusive sleep quality monitoring using smartphones.
In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’13. ACM (2013). doi:10.1145/2517351.2517359

57. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning (2013). doi:10.
1007/b94608

58. Haykin, S.S.: Neural Networks and Learning Machines, vol. 3. Pearson Upper Saddle River,
NJ, USA (2009)

59. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recognit. Lett.
24(9), 1641–1650 (2003)

60. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural comput. 9(8), 1735–1780
(1997)

61. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2),
85–126 (2004)

62. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and
the “echo state network” approach. GMD-Forschungszentrum Informationstechnik (2002)

63. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy
in wireless communication. Science 304(5667), 78–80 (2004)

64. Jolliffe, I.: Principal Component Analysis. Wiley Online Library, Cambridge (2002)
65. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.P.: Safety-constrained reinforcement

learning for mdps. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 130–146. Springer, Berlin (2016)

http://dx.doi.org/10.1007/978-3-662-44874-8
http://www.pewinternet.org/2013/01/28/main-report-8/
http://www.pewinternet.org/2013/01/28/main-report-8/
http://www.gfk.com/insights/press-release/a-third-of-people-track-their-health-or-fitness-who-are-they-and-why-are-they-doing-it/
http://www.gfk.com/insights/press-release/a-third-of-people-track-their-health-or-fitness-who-are-they-and-why-are-they-doing-it/
http://www.gfk.com/insights/press-release/a-third-of-people-track-their-health-or-fitness-who-are-they-and-why-are-they-doing-it/
http://dx.doi.org/10.1145/2517351.2517359
http://dx.doi.org/10.1007/b94608
http://dx.doi.org/10.1007/b94608

226 References

66. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1),
35–45 (1960)

67. Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical
Data Analysis Based on the L1 Norm, pp. 405–416. Springer, Berlin (1987)

68. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis,
vol. 344. Wiley, Cambridge (2009)

69. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: The smartphone and the cloud: power to the
user. International Conference on Mobile Computing. Applications, and Services, pp. 342–
348. Springer, Berlin (2010)

70. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic timewarping. Knowl. Inf. Syst.
7(3), 358–386 (2005)

71. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simmulated annealing.
science 220(4598), 671–680 (1983)

72. Knorr, E.M., Ng, R.T.: Algorithms for mining distancebased outliers in large datasets. In:
Proceedings of the International Conference on Very Large Data Bases, pp. 392–403 (1998)

73. Kolmogorov, A.N.: Sulla determinazione empirica di una legge di distribuzione. na (1933)
74. Könönen, V., Mantyärrvi, J., Similä, H., Pärkkä, J., Ermes, M.: Automatic feature selection

for context recognition in mobile devices. Pervasive Mob. Comput. 6(2), 181–197 (2010).
doi:10.1016/j.pmcj.2009.07.001

75. Kop, R., Hoogendoorn, M., ten Teije, A., Büchner, F.L., Slottje, P., Moons, L.M., Numans,
M.E.: Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on
routine electronic medical records. Comput. Biol. Med. 76, 30–38 (2016)

76. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of
mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010). doi:10.1109/MCOM.
2010.5560598

77. Lang, T., Rettenmeier, M.: Understanding consumer behavior with recurrent neural networks.
In: Proceedings of MLRec, vol. 2 (2017)

78. Lara, O.D.: Labrador, M.A.: A survey on human activity recognition using wearable sen-
sors. IEEECommun. Surv. Tutor. 15(3), 1192–1209 (2013). doi:10.1109/SURV.2012.110112.
00192, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6365160

79. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
80. Li, I., Dey, A., Forlizzi, J.: Understanding My Data, Myself: Supporting self-reflection with

Ubicomp technologies. In: Proceedings of the 13th International Conference on Ubiquitous
Computing, pp. 405–414 (2011). doi:10.1145/2030112.2030166, http://dl.acm.org/citation.
cfm?id=2030166

81. Liao, T.W.:Clustering of time series dataa survey. PatternRecognit. 38(11), 1857–1874 (2005)
82. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
83. Lupton, D.: Self-tracking modes: reflexive self-monitoring and data practices. In: Imminent

Citizenships: Personhood and Identity Politics in the Informatic Age, August (2014)
84. Middelweerd, A., Mollee, J.S., van der Wal, C.N., Brug, J., te Velde, S.J.: Apps to promote

physical activity among adults: a review and content analysis. Int. J. Behav. Nutr. Phys. Act.
11(1), 97 (2014)

85. Mitchell, T.M.: Machine Learning. McGraw-Hill Science, New York (1997)
86. Mitsa, T.: Temporal Data Mining. CRC Press, Hoboken (2010)
87. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT press,

Cambridge (2012)
88. Muaremi, A., Arnrich, B., Tröster, G.: Towards measuring stress with smartphones and wear-

able devices during workday and sleep. BioNanoScience 3(2), 172–183 (2013). doi:10.1007/
s12668-013-0089-2

89. Neff, G., Nafus, D.: Self-Tracking. The MIT Press, Cambridge (2016)
90. Niennattrakul, V., Ratanamahatana, C.A.: On clustering multimedia time series data using

k-means and dynamic time warping. In: 2007 International Conference on Multimedia and
Ubiquitous Engineering (MUE’07), pp. 733–738. IEEE (2007)

http://dx.doi.org/10.1016/j.pmcj.2009.07.001
http://dx.doi.org/10.1109/MCOM.2010.5560598
http://dx.doi.org/10.1109/MCOM.2010.5560598
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6365160
http://dx.doi.org/10.1145/2030112.2030166
http://dl.acm.org/citation.cfm?id=2030166
http://dl.acm.org/citation.cfm?id=2030166
http://dx.doi.org/10.1007/s12668-013-0089-2
http://dx.doi.org/10.1007/s12668-013-0089-2

References 227

91. Novikoff, A.B.: On convergence proofs on perceptrons. In: Symposium on the Mathematical
Theory of Automata, pp. 615–622. Polytechnic Institute of Brooklyn (1962)

92. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345–1359 (2010)

93. Pärkkä, J., Ermes, M., Korpipää, P., Mäntyjärvi, J., Peltola, J., Korhonen, I.: Activity classi-
fication using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. Publ.
IEEE Eng. Med. Biol. Soc. 10(1), 119–128 (2006). doi:10.1109/TITB.2005.856863

94. Peterek, T., Penhaker, M., Gajdoš, P., Dohnálek, P.: Comparison of classification algorithms
for physical activity recognition. In: Innovations in Bio-inspired Computing andApplications,
pp. 123–131. Springer, Berlin (2014)

95. Pierce, D.A.: A duality between autoregressive and moving average processes concerning
their least squares parameter estimates. Ann. Math. Stat. 41(2), 422–426 (1970)

96. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
97. Quinlan, J.R.: Improved use of continuous attributes in c4. 5. J. Artif. Intell. Res. 4, 77–90

(1996)
98. Rabbi, M., Ali, S., Choudhury, T., Berke, E.: Passive and in-situ assessment of mental and

physical well-being using mobile sensors. In: Proceedings of the 13th International Confer-
ence on Ubiquitous Computing, pp. 385–394. ACM (2011)

99. Rojas, R.: Neural Networks: A Systematic Introduction. Springer Science & Business Media,
Berlin (2013)

100. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization
in the brain. Psychol. Rev. 65(6), 386 (1958)

101. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

102. Rummery, G.A., Niranjan, M.: On-line Q-learning Using Connectionist Systems. University
of Cambridge, Department of Engineering, Cambridge (1994)

103. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun.
ACM 18(11), 613–620 (1975)

104. Settles, B.: Active Learning Literature Survey, vol. 52, Issue no. 11, pp. 55–66. University of
Wisconsin, Madison (2010)

105. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Al-
gorithms. Cambridge University Press, Cambridge (2014)

106. Shannon, C.E.: Prediction and entropy of printed english. Bell Labs Tech. J. 30(1), 50–64
(1951)

107. Shumway, R., Stoffer, D.: Time Series Analysis and Its Applications. Springer, Berlin (2011)
108. Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst.

9, 155–161 (1997)
109. Song, M., Wang, H.: Highly efficient incremental estimation of gaussian mixture models for

online data stream clustering. In: Proceedings of SPIE Conference, vol. 5803, p. 175 (2005)
110. Statista: Number of connected wearable devices worldwide (2016). https://www.statista.com/

statistics/487291/global-connected-wearable-devices/
111. Sun, S.L., Deng, Z.L.: Multi-sensor optimal information fusion kalman filter. Automatica

40(6), 1017–1023 (2004)
112. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge

(1998)
113. Swan, M.: Sensor Mania! The internet of things, wearable computing, objective metrics,

and the quantified self 2.0. J. Sens. Actuator Netw. 1(3), 217–253 (2012). doi:10.3390/
jsan1030217, http://www.mdpi.com/2224-2708/1/3/217/htm

114. Swan, M.: The quantified self: fundamental disruption in big data science and biological
discovery. Big Data 1(2), 85–99 (2013). doi:10.1089/big.2012.0002

115. Takagi, M., Fujimoto, K., Kawahara, Y., Asami, T.: Detecting hybrid and electric vehicles
using a smartphone. In: Proceedings of 2014ACMInternational JointConference onPervasive
and Ubiquitous Computing, pp. 267–275 (2014). doi:10.1145/2632048.2632088

http://dx.doi.org/10.1109/TITB.2005.856863
https://www.statista.com/statistics/487291/global-connected-wearable-devices/
https://www.statista.com/statistics/487291/global-connected-wearable-devices/
http://dx.doi.org/10.3390/jsan1030217
http://dx.doi.org/10.3390/jsan1030217
http://www.mdpi.com/2224-2708/1/3/217/htm
http://dx.doi.org/10.1089/big.2012.0002
http://dx.doi.org/10.1145/2632048.2632088

228 References

116. Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-
time recognition of physical activities and their intensities using wireless accelerometers and
a heart monitor. In: Proceedings of the International Symposium on Wearable Comp (2007)

117. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B
(Methodological), 267–288 (1996)

118. Transition-Aware Human Activity Recognition using smartphones: Reyes-Ortiz, J.L., Oneto,
L., Sama, A., Parra, X., https://orcid.org/0000-0002-4943-3021 Anguita, D.A.I.O. Neuro-
comput. Int. J. 171, 754–767 (2016). doi:10.1016/j.neucom.2015.07.085, http://ovidsp.ovid.
com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc11&NEWS=N&AN=2015-39180-001

119. Uther,W.T., Veloso,M.M.: Tree based discretization for continuous state space reinforcement
learning. In: Aaai/iaai, pp. 769–774 (1998)

120. van Breda, W.R., Hoogendoorn, M., Eiben, A., Berking, M.: An evaluation framework for
the comparison of fine-grained predictive models in health care. In: Conference on Artificial
Intelligence in Medicine in Europe, pp. 148–152. Springer, Berlin (2015)

121. Vapnik, V.N.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
122. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events

to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)
123. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble

classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 226–235. ACM (2003)

124. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc.
58(301), 236–244 (1963)

125. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, University of Cambridge,
England (1989)

126. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10),
1550–1560 (1990)

127. Wiering, M., Van Otterlo, M.: Reinforcement learning. Adapt. Learn. Optim. 12 (2012)
128. Williamson, J., Liu, Q., Lu, F., Mohrman, W., Li, K., Dick, R., Shang, L.: Data sensing

and analysis: challenges for wearables. In: 20th Asia and South Pacific Design Automation
Conference, ASP-DAC 2015, pp. 136–141 (2015). doi:10.1109/ASPDAC.2015.7058994

129. Wu,W., Dasgupta, S., Ramirez, E.E., Peterson, C., Norman, G.J.: Classification accuracies of
physical activities using smartphone motion sensors. J. Med. Internet Res. 14(5), 1–9 (2012).
doi:10.2196/jmir.2208

130. Zarchan, P.: Fundamentals of Kalman Filtering: A Practical Approach, 4th edn. AIAA (2015)
131. Zhang, M., Sawchuk, A.: USC-HAD: a daily activity dataset for Ubiquitous activity recog-

nition using wearable sensors. In: Proceedings of ACM Ubiquitous Computing (Ubi-
Comp) (2012). doi:10.1145/2370216.2370438, http://www-scf.usc.edu/mizhang/papers/mi_
ubicomp_sagaware12.pdf

132. Zintgraf, L.M., Cohen, T.S., Adel, T.,Welling,M.: Visualizing deep neural network decisions:
Prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

133. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Royal Stat.
Soc. Ser. B (Statistical Methodology) 67(2), 301–320 (2005)

https://orcid.org/0000-0002-4943-3021
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc11&NEWS=N&AN=2015-39180-001
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc11&NEWS=N&AN=2015-39180-001
http://dx.doi.org/10.1109/ASPDAC.2015.7058994
http://dx.doi.org/10.2196/jmir.2208
http://dx.doi.org/10.1145/2370216.2370438
http://www-scf.usc.edu/mizhang/papers/mi_ubicomp_sagaware12.pdf
http://www-scf.usc.edu/mizhang/papers/mi_ubicomp_sagaware12.pdf
http://arxiv.org/abs/1702.04595

Index

A
Accelerometer, 16
Action, 204
Agent, 203
Agglomerative clustering, 85
Akaike’s Information Criterion (AIC), 176
Arnold, 1
Autocorrelation Function (ACF), 176
Autocovariance function, 173
Autoregressive Integrated Moving Average

(ARIMA), 175
Autoregressive processes, 174

B
Back propagation algorithm, 128
Backpropagation through time, 183
Backward selection, 147
Bagging, 141
Bayesian Information Criterion, 176
Boosting, 142
Boundary condition (dtw), 80
Bruce, 1
Butterworth filter, 38

C
Case study, 15, 42, 65, 94, 148, 195
Categorical scale, 6
Chauvenets criterion, 28
Class conditional probability, 139
Classification, 7
CLIQUE, 88
Clustering, 7
Complete linkage, 85
Concept drift, 92
Convolutional neural networks, 129

Cover’s theorem, 132
Cross correlation distance metric, 79
Crossover, 190
Crowdsignals, 15

D
Datastream clustering, 92
Decision trees, 135
Deep neural networks, 129
Dendrogram, 84
Discrete fourier transform, 58
Distance metrics, 74
Distance weighted nearest neighbor, 134
Dynamic time warping, 79
Dynamical systems model, 186

E
Echo state networks, 184
Eligibility trace, 211
Ensembles, 140
Entropy, 137
Euclidean distance, 74
Exploitation, 205
Exploration, 205
Extrapolation, 34
Extreme learning machines, 184

F
Fast fourier transform, 59
Features, 7
Feature selection, 146
Feedforward neural networks, 125
Forward selection, 146
Fourier transformation, 58

© Springer International Publishing AG 2018
M. Hoogendoorn and B. Funk, Machine Learning for the Quantified Self,
Cognitive Systems Monographs 35, https://doi.org/10.1007/978-3-319-66308-1

229

230 Index

Frequency domain, 58
Frequency weighted signal average, 61
Frequency with the highest amplitude, 61

G
Genetic algorithms, 189
Genotype, 189
Gower’s similarity measure, 76
Granularity, 17
ε-greedy, 209
Group average, 86
Gyroscope, 16

H
Hierarchical clustering, 84

I
ID3 algorithm, 136
Imputation, 25, 34
Individual data points distance metrics, 74
Information gain, 137
Instance, 7
Irregular variations, 169

K
Kalman filter, 35
Keogh bound, 81
Kernel trick, 133
K-means clustering, 82
K-medoids clustering, 83
K-nearest neighbor, 134
Kolmogorov-smirnov test, 77

L
Label, 7
Lag, 79
Lagged autocorrelation, 169
Laplace estimator, 140
Latent dirichlet allocation, 65
Lazy learner, 134
Linear filter, 171
Linear interpolation, 34
Local outlier factor, 32
Lower case, 62
Lowpass filter, 37

M
Machine learning, 4

Magnetometer, 16
Mathematical notation, 8
Measurement, 6
Measurement error, 27
Minkowski distance, 75
Mixture models, 29
Model trees, 138
Monotonicity constraint (dtw), 80
Moving average, 171
Multi-layer neural network, 128
Mutation, 191

N
Naive bayes, 139
Natural language processing, 63
Nominal scale, 6
Non-hierarchical clustering, 82
Non-temporal distance metrics, 77
Numerical scale, 6

O
Off-policy, 210
On-policy, 210
Ordinal scale, 6
Outcome, 7
Outlier, 25, 27
Outlier detection, 7

P
Parameter optimization, 188
Parent selection, 190
Partial Autocorrelation Function (PACF),

176
Pearson coefficient, 146
Pearson correlation coefficient, 79
Perceptron, 125
Perceptron learning algorithm, 126
Periodic variations, 169
Person level distance metrics, 77
Policy, 8, 205
Power spectral entropy, 61
Principal component analysis, 40

Q
Q-learning, 210
Quantified self, 2
Quantified self data, 3

R
Random forest, 141

Index 231

Raw data-based distance metrics, 78
Recurrent neural networks, 181
Regression, 7
Regression trees, 138
Reinforcement learning, 7, 8
Reservoir computing, 184
Reward, 205
Roulette wheel selection, 190

S
Sarsa, 208
Seasonal ARIMA, 180
Semi-supervised learning, 7, 8
Sensors, 16
Simple distance-based outlier detection, 31
Simple genetic algorithm, 189
Simulated annealing, 189
Single linkage, 85
Standard deviation reduction, 138
State, 204
State-action pair, 208
Stemming, 62
Stop word removal, 62
Subspace clustering, 88
Supervised learning, 7
Support vector machines, 131

T
Target, 7
Temporal distance metrics, 77
Temporal locaility, 92
Term frequency inverse document fre-

quency, 63
Time domain, 51
Time series, 6
Time series analysis, 168
Time step size, 17
Tokenization, 62
Topic modeling, 64
Transformation, 25
Trend, 169

U
Unsupervised learning, 7

V
Value function, 205
Variability, 27
Variables, 7

W
Ward’s method, 86
Website of the book, 12

	Foreword
	Preface
	Contents
	1 Introduction
	1.1 The Quantified Self
	1.2 The Goal of this Book
	1.3 Basic Terminology
	1.3.1 Data Terminology
	1.3.2 Machine Learning Terminology

	1.4 Basic Mathematical Notation
	1.5 Overview of the Book

	Part I Sensory Data and Features
	2 Basics of Sensory Data
	2.1 Crowdsignals Dataset
	2.2 Converting the Raw Data to an Aggregated Data Format
	2.3 Exploring the Dataset
	2.4 Machine Learning Tasks
	2.5 Exercises
	2.5.1 Pen and Paper
	2.5.2 Coding

	3 Handling Noise and Missing Values in Sensory Data
	3.1 Detecting Outliers
	3.1.1 Distribution-Based Models
	3.1.2 Distance-Based Models

	3.2 Imputation of Missing Values
	3.3 A Combined Approach: The Kalman Filter
	3.4 Transformation
	3.4.1 Lowpass Filter
	3.4.2 Principal Component Analysis

	3.5 Case Study
	3.5.1 Outlier Detection
	3.5.2 Missing Value Imputation
	3.5.3 Kalman Filter
	3.5.4 Data Transformation

	3.6 Exercises
	3.6.1 Pen and Paper
	3.6.2 Coding

	4 Feature Engineering Based on Sensory Data
	4.1 Time Domain
	4.1.1 Numerical Data
	4.1.2 Categorical Data
	4.1.3 Mixed Data

	4.2 Frequency Domain
	4.2.1 Fourier Transformations
	4.2.2 Features in Frequency Domain

	4.3 Features for Unstructured Data
	4.3.1 Pre-processing Text Data
	4.3.2 Bag of Words
	4.3.3 TF-IDF
	4.3.4 Topic Modeling

	4.4 Case Study
	4.4.1 Time Domain
	4.4.2 Frequency Domain
	4.4.3 New Dataset

	4.5 Exercises
	4.5.1 Pen and Paper
	4.5.2 Coding

	Part II Learning Based on Sensory Data
	5 Clustering
	5.1 Learning Setup
	5.2 Distance Metrics
	5.2.1 Individual Data Points Distance Metrics
	5.2.2 Person Level Distance Metrics

	5.3 Non-hierarchical Clustering
	5.4 Hierarchical Clustering
	5.4.1 Agglomerative Clustering
	5.4.2 Divisive Clustering

	5.5 Subspace Clustering
	5.6 Datastream Clustering
	5.7 Performance Evaluation
	5.8 Case Study
	5.8.1 Non-hierarchical Clustering
	5.8.2 Hierarchical Clustering

	5.9 Exercises
	5.9.1 Pen and Paper
	5.9.2 Coding

	6 Mathematical Foundations for Supervised Learning
	6.1 Learning Process and Elements
	6.1.1 Unknown Target Function
	6.1.2 Observed Data
	6.1.3 Error Measure
	6.1.4 Hypothesis Set and the Learning Machine
	6.1.5 Model Selection and Evaluation

	6.2 Learning Theory
	6.2.1 PAC Learnability
	6.2.2 VC-Dimension and VC-Bound
	6.2.3 Implications

	6.3 Exercises
	6.3.1 Pen and Paper
	6.3.2 Coding

	7 Predictive Modeling without Notion of Time
	7.1 Learning Setup
	7.2 Feedforward Neural Networks
	7.2.1 Perceptron
	7.2.2 Multi-layer Perceptron
	7.2.3 Convolutional Neural Networks

	7.3 Support Vector Machines
	7.4 K-Nearest Neighbor
	7.5 Decision Trees
	7.6 Naive Bayes
	7.7 Ensembles
	7.7.1 Bagging
	7.7.2 Boosting

	7.8 Predictive Modeling for Data Streams
	7.9 Practical Considerations
	7.9.1 Feature Selection
	7.9.2 Regularization

	7.10 Case Study
	7.10.1 Classification: Predicting the Activity Label
	7.10.2 Regression: Predicting the Heart Rate

	7.11 Exercises
	7.11.1 Pen and Paper
	7.11.2 Coding

	8 Predictive Modeling with Notion of Time
	8.1 Learning Setup
	8.2 Time Series Analysis
	8.2.1 Basic Concepts
	8.2.2 Filtering and Smoothing
	8.2.3 Autoregressive Integrated Moving Average Model---ARIMA
	8.2.4 Estimating and Forecasting Time Series Models
	8.2.5 Example Application

	8.3 Neural Networks
	8.3.1 Recurrent Neural Networks
	8.3.2 Echo State Networks

	8.4 Dynamical Systems Models
	8.4.1 Example Based on Bruce's Data
	8.4.2 Parameter Optimization

	8.5 Case Study
	8.5.1 Tuning Parameters
	8.5.2 Results

	8.6 Exercises
	8.6.1 Pen and Paper
	8.6.2 Coding

	9 Reinforcement Learning to Provide Feedback and Support
	9.1 Basic Setting
	9.2 One-Step SARSA Temporal Difference Learning
	9.3 Q-Learning
	9.4 SARSA(λ) and Q(λ)
	9.5 Approximate Solutions
	9.6 Discretizing the State Space
	9.7 Exercises
	9.7.1 Pen and Paper
	9.7.2 Coding

	Part III Discussion
	10 Discussion
	10.1 Learning Full Circle
	10.2 Heterogeneity
	10.3 Effective Data Collection and Reuse
	10.4 Data Processing and Storage
	10.5 Better Predictive Modeling and Clustering
	10.6 Validation

	 References
	

	Index

